These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9286073)

  • 21. Rapid synthesis of three-dimensional sulfur-doped porous graphene via solid-state microwave irradiation for protein removal in plasma sample pretreatment.
    Li F; Lu L; Gao D; Wang M; Wang D; Xia Z
    Talanta; 2018 Aug; 185():528-536. PubMed ID: 29759236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of pore and particle size on the frontal uptake of proteins. Implications for preparative anion-exchange chromatography.
    Kopaciewicz W; Fulton S; Lee SY
    J Chromatogr; 1987 Nov; 409():111-24. PubMed ID: 3693479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of bovine serum albumin on nanosized magnetic particles.
    Peng ZG; Hidajat K; Uddin MS
    J Colloid Interface Sci; 2004 Mar; 271(2):277-83. PubMed ID: 14972603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanded bed adsorption of protein with DEAE Spherodex M.
    Chen WD; Tong XD; Dong XY; Sun Y
    Biotechnol Prog; 2003; 19(3):880-6. PubMed ID: 12790653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single and binary adsorption of proteins on ion-exchange adsorbent: The effectiveness of isothermal models.
    Liang J; Fieg G; Shi QH; Sun Y
    J Sep Sci; 2012 Sep; 35(17):2162-73. PubMed ID: 22888059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterns of protein adsorption in chromatographic particles visualized by optical microscopy.
    Stone MC; Carta G
    J Chromatogr A; 2007 Aug; 1160(1-2):206-14. PubMed ID: 17560582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption in columns packed with porous adsorbent particles having partially fractal structures.
    Li M; Liapis AI
    J Sep Sci; 2013 Jun; 36(12):1913-24. PubMed ID: 23936911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein adsorption in porous adsorbent particles: a multiscale modeling study on inner radial humps in the concentration profiles of adsorbed protein induced by nonuniform ligand density distributions.
    Riccardi E; Wang JC; Liapis AI
    J Sep Sci; 2009 Sep; 32(18):3084-98. PubMed ID: 19630003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frontal chromatography of proteins. Effect of axial dispersion on column performance.
    Heeter GA; Liapis AI
    J Chromatogr A; 1998 Feb; 796(1):157-64. PubMed ID: 9513289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the optimization of the solid core radius of superficially porous particles for finite adsorption rate.
    Kaczmarski K
    J Chromatogr A; 2011 Feb; 1218(7):951-8. PubMed ID: 21216404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developing a chromatographic column model for bovine serum albumin on strong anion-exchanger Source30Q using data from confocal laser scanning microscopy.
    Susanto A; Wekenborg K; Hubbuch J; Schmidt-Traub H
    J Chromatogr A; 2006 Dec; 1137(1):63-75. PubMed ID: 17055517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expanded and packed bed albumin adsorption on fluoride modified zirconia.
    Mullick A; Griffith CM; Flickinger MC
    Biotechnol Bioeng; 1998 Nov; 60(3):333-40. PubMed ID: 10099436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing protein capacity of rigid macroporous polymeric adsorbent.
    Zhou X; Xue B; Sun Y
    Biotechnol Prog; 2001; 17(6):1093-8. PubMed ID: 11735446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictive modeling of protein adsorption along the bed height by taking into account the axial nonuniform liquid dispersion and particle classification in expanded beds.
    Yun J; Lin DQ; Yao SJ
    J Chromatogr A; 2005 Nov; 1095(1-2):16-26. PubMed ID: 16275279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance.
    Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling and simulation of protein uptake in cation exchanger visualized by confocal laser scanning microscopy.
    Yang K; Shi QH; Sun Y
    J Chromatogr A; 2006 Dec; 1136(1):19-28. PubMed ID: 17034803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unusual behavior of the height equivalent to a theoretical plate of a new poroshell stationary phase at high temperatures.
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Oct; 1169(1-2):125-38. PubMed ID: 17889884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of protein uptake within the adsorbent particle during packed bed chromatography.
    Hubbuch J; Linden T; Knieps E; Thömmes J; Kula MR
    Biotechnol Bioeng; 2002 Nov; 80(4):359-68. PubMed ID: 12325144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards rational design of porous nanostructured biopolymeric microparticles for biomacromolecules separation: A case study of intraparticle diffusion facilitation and BSA adsorption on agarose microspheres.
    Roudsari FP; Mehrnia MR; Kaghazian H
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():518-528. PubMed ID: 30274085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.