These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9287116)

  • 21. Origin of apparent negative cooperativity of F(1)-ATPase.
    Ono S; Hara KY; Hirao J; Matsui T; Noji H; Yoshida M; Muneyuki E
    Biochim Biophys Acta; 2003 Oct; 1607(1):35-44. PubMed ID: 14556911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding sites for Mg(II) in H(+)-ATPase from Bacillus PS3 and in the alpha 3 beta 3 gamma subcomplex studied by one-dimensional ESEEM and two-dimensional HYSCORE spectroscopy of oxovanadium(IV) complexes: a possible role for beta-His-324.
    Buy C; Matsui T; Andrianambinintsoa S; Sigalat C; Girault G; Zimmermann JL
    Biochemistry; 1996 Nov; 35(45):14281-93. PubMed ID: 8916914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermophilic F1-ATPase is activated without dissociation of an endogenous inhibitor, epsilon subunit.
    Kato Y; Matsui T; Tanaka N; Muneyuki E; Hisabori T; Yoshida M
    J Biol Chem; 1997 Oct; 272(40):24906-12. PubMed ID: 9312092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A minimum catalytic unit of F1-ATPase shows non-cooperative ATPase activity inherent in a single catalytic site with a Km 70 microM.
    Saika K; Yoshida M
    FEBS Lett; 1995 Jul; 368(2):207-10. PubMed ID: 7628606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II).
    Buy C; Girault G; Zimmermann JL
    Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP hydrolysis in the betaTP and betaDP catalytic sites of F1-ATPase.
    Dittrich M; Hayashi S; Schulten K
    Biophys J; 2004 Nov; 87(5):2954-67. PubMed ID: 15315950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural insight into the cooperativity between catalytic and noncatalytic sites of F1-ATPase.
    Falson P; Goffeau A; Boutry M; Jault JM
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):133-40. PubMed ID: 15282184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate.
    Murataliev MB
    Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The regulatory functions of the gamma and epsilon subunits from chloroplast CF1 are transferred to the core complex, alpha3beta3, from thermophilic bacterial F1.
    Hisabori T; Kato Y; Motohashi K; Kroth-Pancic P; Strotmann H; Amano T
    Eur J Biochem; 1997 Aug; 247(3):1158-65. PubMed ID: 9288943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of an exchangeable non-catalytic site on mitochondrial F1-ATPase which is involved in the negative cooperativity of ATP hydrolysis.
    Edel CM; Hartog AF; Berden JA
    Biochim Biophys Acta; 1993 May; 1142(3):327-35. PubMed ID: 8481383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop.
    Buchert F; Konno H; Hisabori T
    Biochim Biophys Acta; 2015; 1847(4-5):441-450. PubMed ID: 25660164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. alpha3beta3gamma complex of F1-ATPase from thermophilic Bacillus PS3 can maintain steady-state ATP hydrolysis activity depending on the number of non-catalytic sites.
    Amano T; Matsui T; Muneyuki E; Noji H; Hara K; Yoshida M; Hisabori T
    Biochem J; 1999 Oct; 343 Pt 1(Pt 1):135-8. PubMed ID: 10493921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An attempt to convert noncatalytic nucleotide binding site of F1-ATPase to the catalytic site: hydrolysis of tethered ATP by mutated alpha subunits in the enzyme.
    Matsui T; Jault JM; Allison WS; Yoshida M
    Biochem Biophys Res Commun; 1996 Mar; 220(1):94-7. PubMed ID: 8602864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. F1-ATPase alpha-subunit made up from two fragments (1-395, 396-503) is stabilized by ATP and complexes containing it obey altered kinetics.
    Miyauchi M; Tozawa K; Yoshida M
    Biochim Biophys Acta; 1995 Apr; 1229(2):225-32. PubMed ID: 7727499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The heterogeneous interaction of substoichiometric TNP-ATP and F1-ATPase from Escherichia coli.
    Muneyuki E; Hisabori T; Sasayama T; Mochizuki K; Yoshida M
    J Biochem; 1996 Nov; 120(5):940-5. PubMed ID: 8982860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing conformations of the beta subunit of F0F1-ATP synthase in catalysis.
    Masaike T; Suzuki T; Tsunoda SP; Konno H; Yoshida M
    Biochem Biophys Res Commun; 2006 Apr; 342(3):800-7. PubMed ID: 16517239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of time-dependent change of Escherichia coli F1-ATPase activity and its relationship with apparent negative cooperativity.
    Kato Y; Sasayama T; Muneyuki E; Yoshida M
    Biochim Biophys Acta; 1995 Oct; 1231(3):275-81. PubMed ID: 7578215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical modulation of catalytic power on F1-ATPase.
    Watanabe R; Okuno D; Sakakihara S; Shimabukuro K; Iino R; Yoshida M; Noji H
    Nat Chem Biol; 2011 Nov; 8(1):86-92. PubMed ID: 22101603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-site catalysis of F1-ATPase from thermophilic bacterium PS3 and its dominance in steady-state catalysis at low ATP concentration.
    Yohda M; Yoshida M
    J Biochem; 1987 Oct; 102(4):875-83. PubMed ID: 2893790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.