These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1003 related articles for article (PubMed ID: 9287218)
21. Control of the hypothalamo-pituitary-adrenal axis in the neonatal period: adrenocorticotropin and corticosterone stress responses dissociate in vasopressin-deficient brattleboro rats. Zelena D; Domokos A; Barna I; Mergl Z; Haller J; Makara GB Endocrinology; 2008 May; 149(5):2576-83. PubMed ID: 18276753 [TBL] [Abstract][Full Text] [Related]
22. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. Sudo N; Chida Y; Aiba Y; Sonoda J; Oyama N; Yu XN; Kubo C; Koga Y J Physiol; 2004 Jul; 558(Pt 1):263-75. PubMed ID: 15133062 [TBL] [Abstract][Full Text] [Related]
23. Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels. Makino S; Smith MA; Gold PW Endocrinology; 1995 Aug; 136(8):3299-309. PubMed ID: 7628364 [TBL] [Abstract][Full Text] [Related]
24. Aging is associated in the 344/N Fischer rat with decreased stress responsivity of central and peripheral catecholaminergic systems and impairment of the hypothalamic-pituitary-adrenal axis. Cizza G; Gold PW; Chrousos GP Ann N Y Acad Sci; 1995 Dec; 771():491-511. PubMed ID: 8597425 [TBL] [Abstract][Full Text] [Related]
25. Environmental enrichment reverses the effects of maternal separation on stress reactivity. Francis DD; Diorio J; Plotsky PM; Meaney MJ J Neurosci; 2002 Sep; 22(18):7840-3. PubMed ID: 12223535 [TBL] [Abstract][Full Text] [Related]
26. Maternal deprivation effect on the infant's neural stress markers is reversed by tactile stimulation and feeding but not by suppressing corticosterone. van Oers HJ; de Kloet ER; Whelan T; Levine S J Neurosci; 1998 Dec; 18(23):10171-9. PubMed ID: 9822770 [TBL] [Abstract][Full Text] [Related]
27. Testosterone-dependent variations in plasma and intrapituitary corticosteroid binding globulin and stress hypothalamic-pituitary-adrenal activity in the male rat. Viau V; Meaney MJ J Endocrinol; 2004 May; 181(2):223-31. PubMed ID: 15128271 [TBL] [Abstract][Full Text] [Related]
28. Hypothalamic-pituitary-adrenocortical axis changes in a transgenic mouse with impaired glucocorticoid receptor function. Karanth S; Linthorst AC; Stalla GK; Barden N; Holsboer F; Reul JM Endocrinology; 1997 Aug; 138(8):3476-85. PubMed ID: 9231802 [TBL] [Abstract][Full Text] [Related]
29. Perfluorooctane sulfonate (PFOS) can alter the hypothalamic-pituitary-adrenal (HPA) axis activity by modifying CRF1 and glucocorticoid receptors. Salgado-Freiría R; López-Doval S; Lafuente A Toxicol Lett; 2018 Oct; 295():1-9. PubMed ID: 29807116 [TBL] [Abstract][Full Text] [Related]
30. Neuropeptide Y mediates the initial hypothalamic-pituitary-adrenal response to maternal separation in the neonatal mouse. Schmidt MV; Liebl C; Sterlemann V; Ganea K; Hartmann J; Harbich D; Alam S; Müller MB J Endocrinol; 2008 May; 197(2):421-7. PubMed ID: 18434372 [TBL] [Abstract][Full Text] [Related]
32. Enduring, handling-evoked enhancement of hippocampal memory function and glucocorticoid receptor expression involves activation of the corticotropin-releasing factor type 1 receptor. Fenoglio KA; Brunson KL; Avishai-Eliner S; Stone BA; Kapadia BJ; Baram TZ Endocrinology; 2005 Sep; 146(9):4090-6. PubMed ID: 15932935 [TBL] [Abstract][Full Text] [Related]
33. Limited brain diffusion of the glucocorticoid receptor agonist RU28362 following i.c.v. administration: implications for i.c.v. drug delivery and glucocorticoid negative feedback in the hypothalamic-pituitary-adrenal axis. Francis AB; Pace TW; Ginsberg AB; Rubin BA; Spencer RL Neuroscience; 2006 Sep; 141(3):1503-15. PubMed ID: 16806720 [TBL] [Abstract][Full Text] [Related]
34. Chronic cold in adrenalectomized, corticosterone (B)-treated rats: facilitated corticotropin responses to acute restraint emerge as B increases. Akana SF; Dallman MF Endocrinology; 1997 Aug; 138(8):3249-58. PubMed ID: 9231775 [TBL] [Abstract][Full Text] [Related]
35. Development neurobiology of the stress response: multilevel regulation of corticotropin-releasing hormone function. Baram TZ; Yi S; Avishai-Eliner S; Schultz L Ann N Y Acad Sci; 1997 Apr; 814():252-65. PubMed ID: 9160975 [TBL] [Abstract][Full Text] [Related]
36. Effects of denial of reward through maternal contact in the neonatal period on adult hypothalamic-pituitary-adrenal axis function in the rat. Diamantopoulou A; Raftogianni A; Stamatakis A; Oitzl MS; Stylianopoulou F Psychoneuroendocrinology; 2013 Jun; 38(6):830-41. PubMed ID: 23022552 [TBL] [Abstract][Full Text] [Related]
37. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Meaney MJ; Diorio J; Francis D; Widdowson J; LaPlante P; Caldji C; Sharma S; Seckl JR; Plotsky PM Dev Neurosci; 1996; 18(1-2):49-72. PubMed ID: 8840086 [TBL] [Abstract][Full Text] [Related]
38. Effects of long-term voluntary exercise on the mouse hypothalamic-pituitary-adrenocortical axis. Droste SK; Gesing A; Ulbricht S; Müller MB; Linthorst AC; Reul JM Endocrinology; 2003 Jul; 144(7):3012-23. PubMed ID: 12810557 [TBL] [Abstract][Full Text] [Related]
39. Stress and the developing limbic-hypothalamic-pituitary-adrenal axis. Vázquez DM Psychoneuroendocrinology; 1998 Oct; 23(7):663-700. PubMed ID: 9854741 [TBL] [Abstract][Full Text] [Related]
40. Ontogeny of hypothalamic glucocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis in mice. Laryea G; Arnett M; Muglia LJ Stress; 2015; 18(4):400-7. PubMed ID: 26068518 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]