These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9287326)

  • 1. SUG1, a component of the 26 S proteasome, is an ATPase stimulated by specific RNAs.
    Makino Y; Yamano K; Kanemaki M; Morikawa K; Kishimoto T; Shimbara N; Tanaka K; Tamura T
    J Biol Chem; 1997 Sep; 272(37):23201-5. PubMed ID: 9287326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome.
    Wilson HL; Ou MS; Aldrich HC; Maupin-Furlow J
    J Bacteriol; 2000 Mar; 182(6):1680-92. PubMed ID: 10692374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of SUG2. A novel ATPase family component of the yeast 26 S proteasome.
    Russell SJ; Sathyanarayana UG; Johnston SA
    J Biol Chem; 1996 Dec; 271(51):32810-7. PubMed ID: 8955118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes.
    Zwickl P; Ng D; Woo KM; Klenk HP; Goldberg AL
    J Biol Chem; 1999 Sep; 274(37):26008-14. PubMed ID: 10473546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP120.
    Makino Y; Yoshida T; Yogosawa S; Tanaka K; Muramatsu M; Tamura TA
    Genes Cells; 1999 Sep; 4(9):529-39. PubMed ID: 10526239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly conserved ATPase protein as a mediator between acidic activation domains and the TATA-binding protein.
    Swaffield JC; Melcher K; Johnston SA
    Nature; 1995 Mar; 374(6517):88-91. PubMed ID: 7870180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue and cell distribution of a mammalian proteasomal ATPase, MSS1, and its complex formation with the basal transcription factors.
    Yanagi S; Shimbara N; Tamura Ta
    Biochem Biophys Res Commun; 2000 Dec; 279(2):568-73. PubMed ID: 11118327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotidase activities of the 26 S proteasome and its regulatory complex.
    Hoffman L; Rechsteiner M
    J Biol Chem; 1996 Dec; 271(51):32538-45. PubMed ID: 8955078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that proteolysis of Gal4 cannot explain the transcriptional effects of proteasome ATPase mutations.
    Russell SJ; Johnston SA
    J Biol Chem; 2001 Mar; 276(13):9825-31. PubMed ID: 11152478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Sug1/p45 is involved in the proteasome-dependent degradation of Sp1.
    Su K; Yang X; Roos MD; Paterson AJ; Kudlow JE
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):281-9. PubMed ID: 10816420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of the rat proteasomal ATPases: determination of highly conserved structural motifs and rules for their spacing.
    Makino Y; Yogosawa S; Kanemaki M; Yoshida T; Yamano K; Kishimoto T; Moncollin V; Egly JM; Muramatsu M; Tamura T
    Biochem Biophys Res Commun; 1996 Mar; 220(3):1049-54. PubMed ID: 8607789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of proteasomal ATPases.
    Wollenberg K; Swaffield JC
    Mol Biol Evol; 2001 Jun; 18(6):962-74. PubMed ID: 11371584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An RNA-dependent ATPase from Chlamydomonas reinhardII.
    Chu AS; Richardson JP
    Biochim Biophys Acta; 1981 May; 653(3):378-90. PubMed ID: 6113844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of the 26 S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity.
    Armon T; Ganoth D; Hershko A
    J Biol Chem; 1990 Dec; 265(34):20723-6. PubMed ID: 2174423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the nucleoside triphosphate phosphohydrolase (ATPase) activity of RNA synthesis termination factor p. II. Influence of synthetic RNA homopolymers and random copolymers on the reaction.
    Lowery C; Richardson JP
    J Biol Chem; 1977 Feb; 252(4):1381-5. PubMed ID: 138682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the multicatalytic protease. The 11 S regulator and 20 S ATPase complexes contain distinct 30-kilodalton subunits.
    Hoffman L; Rechsteiner M
    J Biol Chem; 1994 Jun; 269(24):16890-5. PubMed ID: 8207011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli.
    Zwickl P; Lottspeich F; Baumeister W
    FEBS Lett; 1992 Nov; 312(2-3):157-60. PubMed ID: 1426246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR.
    Masuyama H; MacDonald PN
    J Cell Biochem; 1998 Dec; 71(3):429-40. PubMed ID: 9831079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome.
    Rubin DM; Glickman MH; Larsen CN; Dhruvakumar S; Finley D
    EMBO J; 1998 Sep; 17(17):4909-19. PubMed ID: 9724628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Halophilic 20S proteasomes of the archaeon Haloferax volcanii: purification, characterization, and gene sequence analysis.
    Wilson HL; Aldrich HC; Maupin-Furlow J
    J Bacteriol; 1999 Sep; 181(18):5814-24. PubMed ID: 10482525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.