These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 9287423)
81. Complex brain and optic lobes in an early Cambrian arthropod. Ma X; Hou X; Edgecombe GD; Strausfeld NJ Nature; 2012 Oct; 490(7419):258-61. PubMed ID: 23060195 [TBL] [Abstract][Full Text] [Related]
82. Close phylogenetic relationship between Vestimentifera (tube worms) and Annelida revealed by the amino acid sequence of elongation factor-1 alpha. Kojima S; Hashimoto T; Hasegawa M; Murata S; Ohta S; Seki H; Okada N J Mol Evol; 1993 Jul; 37(1):66-70. PubMed ID: 8360920 [TBL] [Abstract][Full Text] [Related]
83. Convergent evolution of optic lobe neuropil in Pancrustacea. Strausfeld NJ; Olea-Rowe B Arthropod Struct Dev; 2021 Mar; 61():101040. PubMed ID: 33706077 [TBL] [Abstract][Full Text] [Related]
84. Revealing pancrustacean relationships: phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers. Timmermans MJ; Roelofs D; Mariën J; van Straalen NM BMC Evol Biol; 2008 Mar; 8():83. PubMed ID: 18366624 [TBL] [Abstract][Full Text] [Related]
85. Immunolocalization of histamine in the optic neuropils of Scutigera coleoptrata (Myriapoda: Chilopoda) reveals the basal organization of visual systems in Mandibulata. Sombke A; Harzsch S Neurosci Lett; 2015 May; 594():111-6. PubMed ID: 25797184 [TBL] [Abstract][Full Text] [Related]
86. Biochemical and molecular characterisation of hemocyanin from the amphipod Gammarus roeseli: complex pattern of hemocyanin subunit evolution in Crustacea. Hagner-Holler S; Kusche K; Hembach A; Burmester T J Comp Physiol B; 2005 Aug; 175(6):445-52. PubMed ID: 16025337 [TBL] [Abstract][Full Text] [Related]
87. Ultrastructural analysis of the ovary and oogenesis in Spinicaudata and Laevicaudata (Branchiopoda) and its phylogenetic implications. Jaglarz MK; Kubrakiewicz J; Jędrzejowska I; Gołdyn B; Biliński SM Zoology (Jena); 2014 Jun; 117(3):207-15. PubMed ID: 24657201 [TBL] [Abstract][Full Text] [Related]
89. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Matheny PB; Wang Z; Binder M; Curtis JM; Lim YW; Nilsson RH; Hughes KW; Hofstetter V; Ammirati JF; Schoch CL; Langer E; Langer G; McLaughlin DJ; Wilson AW; Frøslev T; Ge ZW; Kerrigan RW; Slot JC; Yang ZL; Baroni TJ; Fischer M; Hosaka K; Matsuura K; Seidl MT; Vauras J; Hibbett DS Mol Phylogenet Evol; 2007 May; 43(2):430-51. PubMed ID: 17081773 [TBL] [Abstract][Full Text] [Related]
90. Phylogenetic utility of elongation factor-1 alpha in noctuoidea (Insecta: Lepidoptera): the limits of synonymous substitution. Mitchell A; Cho S; Regier JC; Mitter C; Poole RW; Matthews M Mol Biol Evol; 1997 Apr; 14(4):381-90. PubMed ID: 9100368 [TBL] [Abstract][Full Text] [Related]
91. Neurogenesis in the crustacean ventral nerve cord: homology of neuronal stem cells in Malacostraca and Branchiopoda? Harzsch S Evol Dev; 2001; 3(3):154-69. PubMed ID: 11440250 [TBL] [Abstract][Full Text] [Related]
92. Occurrence of hemocyanin in ostracod crustaceans. Marxen JC; Pick C; Oakley TH; Burmester T J Mol Evol; 2014 Aug; 79(1-2):3-11. PubMed ID: 25135304 [TBL] [Abstract][Full Text] [Related]
93. A molecular palaeobiological exploration of arthropod terrestrialization. Lozano-Fernandez J; Carton R; Tanner AR; Puttick MN; Blaxter M; Vinther J; Olesen J; Giribet G; Edgecombe GD; Pisani D Philos Trans R Soc Lond B Biol Sci; 2016 Jul; 371(1699):. PubMed ID: 27325830 [TBL] [Abstract][Full Text] [Related]
94. Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies. Fernández R; Edgecombe GD; Giribet G Sci Rep; 2018 Jan; 8(1):83. PubMed ID: 29311682 [TBL] [Abstract][Full Text] [Related]
95. Comparative analysis of mitochondrial genomes in Diplura (hexapoda, arthropoda): taxon sampling is crucial for phylogenetic inferences. Chen WJ; Koch M; Mallatt JM; Luan YX Genome Biol Evol; 2014 Jan; 6(1):105-20. PubMed ID: 24391151 [TBL] [Abstract][Full Text] [Related]
96. Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? Janssen R; Damen WG; Budd GE BMC Evol Biol; 2011 Feb; 11():50. PubMed ID: 21349177 [TBL] [Abstract][Full Text] [Related]
97. The structure of arthropod hemocyanins. Linzen B; Soeter NM; Riggs AF; Schneider HJ; Schartau W; Moore MD; Yokota E; Behrens PQ; Nakashima H; Takagi T Science; 1985 Aug; 229(4713):519-24. PubMed ID: 4023698 [TBL] [Abstract][Full Text] [Related]
98. Conflict between datasets and phylogeny of centipedes: an analysis based on seven genes and morphology. Giribet G; Edgecombe GD Proc Biol Sci; 2006 Mar; 273(1586):531-8. PubMed ID: 16537123 [TBL] [Abstract][Full Text] [Related]
99. Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cameron SL; Miller KB; D'Haese CA; Whiting MF; Barker SC Cladistics; 2004 Dec; 20(6):534-557. PubMed ID: 34892962 [TBL] [Abstract][Full Text] [Related]
100. Evolution of neuropeptides in non-pterygote hexapods. Derst C; Dircksen H; Meusemann K; Zhou X; Liu S; Predel R BMC Evol Biol; 2016 Feb; 16():51. PubMed ID: 26923142 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]