These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9287428)

  • 21. New aspects on lanosterol 14alpha-demethylase and cytochrome P450 evolution: lanosterol/cycloartenol diversification and lateral transfer.
    Rezen T; Debeljak N; Kordis D; Rozman D
    J Mol Evol; 2004 Jul; 59(1):51-8. PubMed ID: 15383907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis.
    Zámocký M; Koller F
    Prog Biophys Mol Biol; 1999; 72(1):19-66. PubMed ID: 10446501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pectin methylesterases: sequence-structural features and phylogenetic relationships.
    Markovic O; Janecek S
    Carbohydr Res; 2004 Sep; 339(13):2281-95. PubMed ID: 15337457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer.
    Frickey T; Kannenberg E
    Environ Microbiol; 2009 May; 11(5):1224-41. PubMed ID: 19207562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes.
    Liu YJ; Hodson MC; Hall BD
    BMC Evol Biol; 2006 Sep; 6():74. PubMed ID: 17010206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins).
    Mittenhuber G
    J Mol Microbiol Biotechnol; 2001 Oct; 3(4):585-600. PubMed ID: 11545276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A protein-based phylogenetic tree for gram-positive bacteria derived from hrcA, a unique heat-shock regulatory gene.
    Ahmad S; Selvapandiyan A; Bhatnagar RK
    Int J Syst Bacteriol; 1999 Oct; 49 Pt 4():1387-94. PubMed ID: 10555317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria.
    Bernroitner M; Zamocky M; Furtmüller PG; Peschek GA; Obinger C
    J Exp Bot; 2009; 60(2):423-40. PubMed ID: 19129167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular phylogeny of the kingdoms Animalia, Plantae, and Fungi.
    Gouy M; Li WH
    Mol Biol Evol; 1989 Mar; 6(2):109-22. PubMed ID: 2469937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two distinct groups of fungal catalase/peroxidases.
    Zámocký M; Furtmüller PG; Obinger C
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):772-7. PubMed ID: 19614592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production, characterization, cloning and sequence analysis of a monofunctional catalase from Serratia marcescens SYBC08.
    Zeng HW; Cai YJ; Liao XR; Zhang F; Zhang DB
    J Basic Microbiol; 2011 Apr; 51(2):205-14. PubMed ID: 21077118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phylogenetic analysis, molecular modeling, substrate-inhibitor specificity, and active site comparison of bacterial, fungal, and plant heme peroxidases.
    Singh S; Pandey VP; Naaz H; Dwivedi UN
    Biotechnol Appl Biochem; 2012; 59(4):283-94. PubMed ID: 23586862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota.
    Klotz MG; Loewen PC
    Mol Biol Evol; 2003 Jul; 20(7):1098-112. PubMed ID: 12777528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A eukaryote without catalase-containing microbodies: Neurospora crassa exhibits a unique cellular distribution of its four catalases.
    Schliebs W; Würtz C; Kunau WH; Veenhuis M; Rottensteiner H
    Eukaryot Cell; 2006 Sep; 5(9):1490-502. PubMed ID: 16963632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-function relationships in fungal large-subunit catalases.
    Díaz A; Valdés VJ; Rudiño-Piñera E; Horjales E; Hansberg W
    J Mol Biol; 2009 Feb; 386(1):218-32. PubMed ID: 19109972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Marine teleost ortholog of catalase from rock bream (Oplegnathus fasciatus): molecular perspectives from genomic organization to enzymatic behavior with respect to its potent antioxidant properties.
    Elvitigala DA; Premachandra HK; Whang I; Priyathilaka TT; Kim E; Lim BS; Jung HB; Yeo SY; Park HC; Lee J
    Fish Shellfish Immunol; 2013 Oct; 35(4):1086-96. PubMed ID: 23872475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. KatB, a cyanobacterial Mn-catalase with unique active site configuration: Implications for enzyme function.
    Bihani SC; Chakravarty D; Ballal A
    Free Radic Biol Med; 2016 Apr; 93():118-29. PubMed ID: 26826576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular identification, heterologous expression and properties of light-insensitive plant catalases.
    Engel N; Schmidt M; Lütz C; Feierabend J
    Plant Cell Environ; 2006 Apr; 29(4):593-607. PubMed ID: 17080610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural characteristics and possible horizontal transfer of group I introns between closely related plant pathogenic fungi.
    Holst-Jensen A; Vaage M; Schumacher T; Johansen S
    Mol Biol Evol; 1999 Jan; 16(1):114-26. PubMed ID: 10331256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of phylogenetic inconsistencies in the three domains of life.
    Soria-Carrasco V; Castresana J
    Mol Biol Evol; 2008 Nov; 25(11):2319-29. PubMed ID: 18701430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.