BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9287984)

  • 1. The cystic fibrosis transmembrane conductance regulator as a marker of human pancreatic duct development.
    Hyde K; Reid CJ; Tebbutt SJ; Weide L; Hollingsworth MA; Harris A
    Gastroenterology; 1997 Sep; 113(3):914-9. PubMed ID: 9287984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The duct cell in cystic fibrosis.
    Harris A
    Ann N Y Acad Sci; 1999 Jun; 880():17-30. PubMed ID: 10415847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro validation of duct differentiation in developing embryonic mouse pancreas.
    Kadison AS; Maldonado TS; Crisera CA; Longaker MT; Gittes GK
    J Surg Res; 2000 May; 90(2):126-30. PubMed ID: 10792952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFTR gene transfer to human cystic fibrosis pancreatic duct cells using a Sendai virus vector.
    Rakonczay Z; Hegyi P; Hasegawa M; Inoue M; You J; Iida A; Ignáth I; Alton EW; Griesenbach U; Ovári G; Vág J; Da Paula AC; Crawford RM; Varga G; Amaral MD; Mehta A; Lonovics J; Argent BE; Gray MA
    J Cell Physiol; 2008 Feb; 214(2):442-55. PubMed ID: 17654517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cystic fibrosis transmembrane conductance regulator currents in guinea pig pancreatic duct cells: inhibition by bicarbonate ions.
    O'Reilly CM; Winpenny JP; Argent BE; Gray MA
    Gastroenterology; 2000 Jun; 118(6):1187-96. PubMed ID: 10833494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of CFTR gene silencing by siRNA or the luminal application of a CFTR activator on fluid secretion from guinea-pig pancreatic duct cells.
    Ko SB; Yamamoto A; Azuma S; Song H; Kamimura K; Nakakuki M; Gray MA; Becq F; Ishiguro H; Goto H
    Biochem Biophys Res Commun; 2011 Jul; 410(4):904-9. PubMed ID: 21708133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells.
    Cohn JA; Strong TV; Picciotto MR; Nairn AC; Collins FS; Fitz JG
    Gastroenterology; 1993 Dec; 105(6):1857-64. PubMed ID: 7504645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense oligodeoxynucleotide to the cystic fibrosis transmembrane conductance regulator inhibits cyclic AMP-activated but not calcium-activated cell volume reduction in a human pancreatic duct cell line.
    Kopelman H; Gauthier C; Bornstein M
    J Clin Invest; 1993 Mar; 91(3):1253-7. PubMed ID: 7680666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of cftr function leads to pancreatic destruction in larval zebrafish.
    Navis A; Bagnat M
    Dev Biol; 2015 Mar; 399(2):237-48. PubMed ID: 25592226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3- conductances.
    Reddy MM; Quinton PM
    JOP; 2001 Jul; 2(4 Suppl):212-8. PubMed ID: 11875262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of cystic fibrosis transmembrane conductance regulator in human gallbladder epithelial cells.
    Dray-Charier N; Paul A; Veissiere D; Mergey M; Scoazec JY; Capeau J; Brahimi-Horn C; Housset C
    Lab Invest; 1995 Dec; 73(6):828-36. PubMed ID: 8558844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cytosolic pH on epithelial Na+ channel in normal and cystic fibrosis sweat ducts.
    Reddy MM; Wang XF; Quinton PM
    J Membr Biol; 2008; 225(1-3):1-11. PubMed ID: 18937003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the cystic fibrosis gene in human foetal tissues.
    Trezise AE; Chambers JA; Wardle CJ; Gould S; Harris A
    Hum Mol Genet; 1993 Mar; 2(3):213-8. PubMed ID: 7684639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride-bicarbonate exchangers in the human fetal pancreas.
    Hyde K; Harrison D; Hollingsworth MA; Harris A
    Biochem Biophys Res Commun; 1999 Sep; 263(2):315-21. PubMed ID: 10491290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Cystic Fibrosis Using Pluripotent Stem Cell-Derived Human Pancreatic Ductal Epithelial Cells.
    Simsek S; Zhou T; Robinson CL; Tsai SY; Crespo M; Amin S; Lin X; Hon J; Evans T; Chen S
    Stem Cells Transl Med; 2016 May; 5(5):572-9. PubMed ID: 27034411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFTR expression but not Cl- transport is involved in the stimulatory effect of bile acids on apical Cl-/HCO3- exchange activity in human pancreatic duct cells.
    Ignáth I; Hegyi P; Venglovecz V; Székely CA; Carr G; Hasegawa M; Inoue M; Takács T; Argent BE; Gray MA; Rakonczay Z
    Pancreas; 2009 Nov; 38(8):921-9. PubMed ID: 19752774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alcohol disrupts levels and function of the cystic fibrosis transmembrane conductance regulator to promote development of pancreatitis.
    Maléth J; Balázs A; Pallagi P; Balla Z; Kui B; Katona M; Judák L; Németh I; Kemény LV; Rakonczay Z; Venglovecz V; Földesi I; Pető Z; Somorácz Á; Borka K; Perdomo D; Lukacs GL; Gray MA; Monterisi S; Zaccolo M; Sendler M; Mayerle J; Kühn JP; Lerch MM; Sahin-Tóth M; Hegyi P
    Gastroenterology; 2015 Feb; 148(2):427-39.e16. PubMed ID: 25447846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spliceosome-mediated RNA trans-splicing with recombinant adeno-associated virus partially restores cystic fibrosis transmembrane conductance regulator function to polarized human cystic fibrosis airway epithelial cells.
    Liu X; Luo M; Zhang LN; Yan Z; Zak R; Ding W; Mansfield SG; Mitchell LG; Engelhardt JF
    Hum Gene Ther; 2005 Sep; 16(9):1116-23. PubMed ID: 16149910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia.
    Kreda SM; Mall M; Mengos A; Rochelle L; Yankaskas J; Riordan JR; Boucher RC
    Mol Biol Cell; 2005 May; 16(5):2154-67. PubMed ID: 15716351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immuno and functional characterization of CFTR in submandibular and pancreatic acinar and duct cells.
    Zeng W; Lee MG; Yan M; Diaz J; Benjamin I; Marino CR; Kopito R; Freedman S; Cotton C; Muallem S; Thomas P
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C442-55. PubMed ID: 9277342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.