BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9288185)

  • 1. Transient tyrosine phosphorylation of p34cdc2 is an early event in radiation-induced apoptosis of prostate cancer cells.
    Kyprianou N; Bains A; Rhee JG
    Prostate; 1997 Sep; 32(4):266-71. PubMed ID: 9288185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionizing radiation induces rapid tyrosine phosphorylation of p34cdc2.
    Kharbanda S; Saleem A; Datta R; Yuan ZM; Weichselbaum R; Kufe D
    Cancer Res; 1994 Mar; 54(6):1412-4. PubMed ID: 8137239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined antitumor effect of suramin plus irradiation in human prostate cancer cells: the role of apoptosis.
    Sklar GN; Eddy HA; Jacobs SC; Kyprianou N
    J Urol; 1993 Nov; 150(5 Pt 1):1526-32. PubMed ID: 8411447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation-induced apoptosis of human prostate cancer cells is independent of mutant p53 overexpression.
    Kyprianou N; Rock S
    Anticancer Res; 1998; 18(2A):897-905. PubMed ID: 9615738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation between cell cycle arrest and apoptosis can occur in Li-Fraumeni cells heterozygous for p53 gene mutations.
    Delia D; Goi K; Mizutani S; Yamada T; Aiello A; Fontanella E; Lamorte G; Iwata S; Ishioka C; Krajewski S; Reed JC; Pierotti MA
    Oncogene; 1997 May; 14(18):2137-47. PubMed ID: 9174049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apoptosis and clonogenic cell death in PC3 human prostate cancer cells after treatment with gamma radiation and suramin.
    Palayoor ST; Bump EA; Teicher BA; Coleman CN
    Radiat Res; 1997 Aug; 148(2):105-14. PubMed ID: 9254728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of tyrosine phosphorylation in radiation-induced cell cycle-arrest of leukemic B-cell precursors at the G2-M transition checkpoint.
    Tuel-Ahlgren L; Jun X; Waddick KG; Jin J; Bolen J; Uckun FM
    Leuk Lymphoma; 1996 Feb; 20(5-6):417-26. PubMed ID: 8833397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionizing radiation-induced mitogen-activated protein (MAP) kinase activation in DU145 prostate carcinoma cells: MAP kinase inhibition enhances radiation-induced cell killing and G2/M-phase arrest.
    Hagan M; Wang L; Hanley JR; Park JS; Dent P
    Radiat Res; 2000 Apr; 153(4):371-83. PubMed ID: 10760996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cis-diamminedichloroplatinum(II) inhibits p34cdc2 protein kinase in human lung-cancer cells.
    Nishio K; Fujiwara Y; Miyahara Y; Takeda Y; Ohira T; Kubota N; Ohta S; Funayama Y; Ogasawara H; Ohata M
    Int J Cancer; 1993 Oct; 55(4):616-22. PubMed ID: 8406990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans.
    Ye XS; Fincher RR; Tang A; Osmani SA
    EMBO J; 1997 Jan; 16(1):182-92. PubMed ID: 9009279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation inactivation of human prostate cancer cells: the role of apoptosis.
    Algan O; Stobbe CC; Helt AM; Hanks GE; Chapman JD
    Radiat Res; 1996 Sep; 146(3):267-75. PubMed ID: 8752304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53.
    Wang Q; Fan S; Eastman A; Worland PJ; Sausville EA; O'Connor PM
    J Natl Cancer Inst; 1996 Jul; 88(14):956-65. PubMed ID: 8667426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha1-adrenoceptor antagonists radiosensitize prostate cancer cells via apoptosis induction.
    Cuellar DC; Rhee J; Kyprianou N
    Anticancer Res; 2002; 22(3):1673-9. PubMed ID: 12168853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of CDC25B overrides radiation-induced G2-M arrest and results in increased apoptosis in esophageal cancer cells.
    Miyata H; Doki Y; Yamamoto H; Kishi K; Takemoto H; Fujiwara Y; Yasuda T; Yano M; Inoue M; Shiozaki H; Weinstein IB; Monden M
    Cancer Res; 2001 Apr; 61(7):3188-93. PubMed ID: 11306507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of p34cdc2 coincident with taxol-induced apoptosis.
    Donaldson KL; Goolsby GL; Kiener PA; Wahl AF
    Cell Growth Differ; 1994 Oct; 5(10):1041-50. PubMed ID: 7848905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of environmental pH on G2-phase arrest caused by ionizing radiation.
    Park HJ; Lee SH; Chung H; Rhee YH; Lim BU; Ha SW; Griffin RJ; Lee HS; Song CW; Choi EK
    Radiat Res; 2003 Jan; 159(1):86-93. PubMed ID: 12492371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Premature p34cdc2 activation required for apoptosis.
    Shi L; Nishioka WK; Th'ng J; Bradbury EM; Litchfield DW; Greenberg AH
    Science; 1994 Feb; 263(5150):1143-5. PubMed ID: 8108732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell cycle-dependent antagonistic interactions between paclitaxel and gamma-radiation in combination therapy.
    Sui M; Dziadyk JM; Zhu X; Fan W
    Clin Cancer Res; 2004 Jul; 10(14):4848-57. PubMed ID: 15269161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of p34cdc2 kinase activation, p34cdc2 tyrosine dephosphorylation, and mitotic progression in Chinese hamster ovary cells exposed to etoposide.
    Lock RB
    Cancer Res; 1992 Apr; 52(7):1817-22. PubMed ID: 1551112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of p34cdc2 protein kinase activity by phosphorylation and cyclin binding.
    Nigg EA; Gallant P; Krek W
    Ciba Found Symp; 1992; 170():72-84; discussion 84-96. PubMed ID: 1483352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.