These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 9288218)
1. Spontaneous changes of unilateral nasal airflow in man. A re-examination of the 'nasal cycle'. Flanagan P; Eccles R Acta Otolaryngol; 1997 Jul; 117(4):590-5. PubMed ID: 9288218 [TBL] [Abstract][Full Text] [Related]
2. A model for the central control of airflow patterns within the human nasal cycle. Williams M; Eccles R J Laryngol Otol; 2016 Jan; 130(1):82-8. PubMed ID: 26482243 [TBL] [Abstract][Full Text] [Related]
3. Changes in the amplitude of the nasal cycle associated with symptoms of acute upper respiratory tract infection. Eccles R; Reilly M; Eccles KS Acta Otolaryngol; 1996 Jan; 116(1):77-81. PubMed ID: 8820355 [TBL] [Abstract][Full Text] [Related]
4. The nasal cycle after deprivation of airflow: a study of laryngectomy patients using acoustic rhinometry. Fisher EW; Liu M; Lund VJ Acta Otolaryngol; 1994 Jul; 114(4):443-6. PubMed ID: 7976317 [TBL] [Abstract][Full Text] [Related]
5. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages. Kimbell JS; Godo MN; Gross EA; Joyner DR; Richardson RB; Morgan KT Toxicol Appl Pharmacol; 1997 Aug; 145(2):388-98. PubMed ID: 9266813 [TBL] [Abstract][Full Text] [Related]
7. The nasal cycle and age. Williams MR; Eccles R Acta Otolaryngol; 2015 Aug; 135(8):831-4. PubMed ID: 25803147 [TBL] [Abstract][Full Text] [Related]
8. Comparison between unilateral PNIF and rhinomanometry in the evaluation of nasal cycle. Pendolino AL; Nardello E; Lund VJ; Maculan P; Scarpa B; Martini A; Ottaviano G Rhinology; 2018 Jun; 56(2):122-126. PubMed ID: 29055966 [TBL] [Abstract][Full Text] [Related]
9. Activity Patterns Elicited by Airflow in the Olfactory Bulb and Their Possible Functions. Wu R; Liu Y; Wang L; Li B; Xu F J Neurosci; 2017 Nov; 37(44):10700-10711. PubMed ID: 28972124 [TBL] [Abstract][Full Text] [Related]
10. Numerical simulation of airflow in the human nasal cavity. Keyhani K; Scherer PW; Mozell MM J Biomech Eng; 1995 Nov; 117(4):429-41. PubMed ID: 8748525 [TBL] [Abstract][Full Text] [Related]
11. Numerical simulation of nasal airflows and thermal air modification in newborns. Moreddu E; Meister L; Dabadie A; Triglia JM; Médale M; Nicollas R Med Biol Eng Comput; 2020 Feb; 58(2):307-317. PubMed ID: 31848979 [TBL] [Abstract][Full Text] [Related]
12. Numerical study of the effect of the nasal cycle on unilateral nasal resistance. Jo G; Chung SK; Na Y Respir Physiol Neurobiol; 2015 Dec; 219():58-68. PubMed ID: 26315663 [TBL] [Abstract][Full Text] [Related]
16. Continuous assessment of nasal airflow resistance by adaptive modeling. Seppänen T; Koskinen M; Seppänen TM; Raappana A; Alho OP Physiol Meas; 2009 Nov; 30(11):1197-209. PubMed ID: 19794236 [TBL] [Abstract][Full Text] [Related]
17. [Numerical simulation study on effects of ambient temperature on airflow in the nasal cavity]. Xiong GX; Li JF; Lei WB; Zhou XH; Zhan JM; Xu G Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2011 Nov; 46(11):928-32. PubMed ID: 22335980 [TBL] [Abstract][Full Text] [Related]
18. Variations in nasal resistance in man: a rhinomanometric study of the nasal cycle in 50 human subjects. Hasegawa M; Kern EB Rhinology; 1978 Mar; 16(1):19-29. PubMed ID: 635366 [TBL] [Abstract][Full Text] [Related]
19. A review of the effects of expansion of the nasal base on nasal airflow and resistance. Neeley WW; Edgin WA; Gonzales DA J Oral Maxillofac Surg; 2007 Jun; 65(6):1174-9. PubMed ID: 17517302 [TBL] [Abstract][Full Text] [Related]
20. [Spontaneous changes of nasal patency, the nasal cycle, classification, frequency, and clinical significance]. Gotlib T; Samoliński B; Arcimowicz M Otolaryngol Pol; 2002; 56(4):421-5. PubMed ID: 12378800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]