These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 9288682)

  • 21. Synchronous oscillations of length and stiffness during loaded shortening of frog muscle fibres.
    Edman KA; Curtin NA
    J Physiol; 2001 Jul; 534(Pt. 2):553-63. PubMed ID: 11454972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy storage during stretch of active single fibres from frog skeletal muscle.
    Linari M; Woledge RC; Curtin NA
    J Physiol; 2003 Apr; 548(Pt 2):461-74. PubMed ID: 12598584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stretch of contracting muscle fibres: evidence for regularly spaced active sites along the filaments and enhanced mechanical performance.
    Edman KA; Elzinga G; Noble MI
    Adv Exp Med Biol; 1984; 170():739-51. PubMed ID: 6611040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tension transients during steady shortening of frog muscle fibres.
    Ford LE; Huxley AF; Simmons RM
    J Physiol; 1985 Apr; 361():131-50. PubMed ID: 3872938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in conformation of myosin heads during the development of isometric contraction and rapid shortening in single frog muscle fibres.
    Piazzesi G; Reconditi M; Dobbie I; Linari M; Boesecke P; Diat O; Irving M; Lombardi V
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):305-12. PubMed ID: 9852315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sarcomere length dependence of the force-velocity relation in single frog muscle fibers.
    Granzier HL; Burns DH; Pollack GH
    Biophys J; 1989 Mar; 55(3):499-507. PubMed ID: 2784695
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1990 May; 424():133-49. PubMed ID: 2391650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The force bearing capacity of frog muscle fibres during stretch: its relation to sarcomere length and fibre width.
    Edman KA
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):515-26. PubMed ID: 10457067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stable maintenance heat rate and contractile properties of different single muscle fibres from Xenopus laevis at 20 degrees C.
    Elzinga G; Lännergren J; Stienen GJ
    J Physiol; 1987 Dec; 393():399-412. PubMed ID: 3446801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Force-velocity relation in deuterium oxide-treated frog single muscle fibres during the rise of tension in an isometric tetanus.
    Cecchi G; Colomo F; Lombardi V
    J Physiol; 1981 Aug; 317():207-21. PubMed ID: 6273545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics.
    Iwamoto H
    Biophys J; 1995 Sep; 69(3):1022-35. PubMed ID: 8519957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detachment of low-force bridges contributes to the rapid tension transients of skinned rabbit skeletal muscle fibres.
    Seow CY; Shroff SG; Ford LE
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):149-64. PubMed ID: 9175000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Moderate fatigue studied at great sarcomere lengths in frog single muscle fibres.
    Lou F; Sun YB
    Acta Physiol Scand; 1994 Oct; 152(2):163-72. PubMed ID: 7839860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The force-velocity relationship in vertebrate muscle fibres at varied tonicity of the extracellular medium.
    Edman KA; Hwang JC
    J Physiol; 1977 Jul; 269(2):255-72. PubMed ID: 302331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A non-cross-bridge stiffness in activated frog muscle fibers.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The contractile response during steady lengthening of stimulated frog muscle fibres.
    Lombardi V; Piazzesi G
    J Physiol; 1990 Dec; 431():141-71. PubMed ID: 2100305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force-velocity relation for frog muscle fibres: effects of moderate fatigue and of intracellular acidification.
    Curtin NA; Edman KA
    J Physiol; 1994 Mar; 475(3):483-94. PubMed ID: 8006830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The maximum speed of shortening in living and skinned frog muscle fibres.
    Julian FJ; Rome LC; Stephenson DG; Striz S
    J Physiol; 1986 Jan; 370():181-99. PubMed ID: 3485715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy cost of isometric force production after active shortening in skinned muscle fibres.
    Joumaa V; Fitzowich A; Herzog W
    J Exp Biol; 2017 Apr; 220(Pt 8):1509-1515. PubMed ID: 28232399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanisms of force enhancement during constant velocity lengthening in tetanized single fibres of frog muscle.
    Colomo F; Lombardi V; Piazzesi G
    Adv Exp Med Biol; 1988; 226():489-502. PubMed ID: 3261491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.