These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9288831)

  • 21. Inhibitory neurons in the human epileptogenic temporal neocortex. An immunocytochemical study.
    Marco P; Sola RG; Pulido P; Alijarde MT; Sánchez A; Ramón y Cajal S; DeFelipe J
    Brain; 1996 Aug; 119 ( Pt 4)():1327-47. PubMed ID: 8813295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey.
    Somogyi P; Freund TF; Cowey A
    Neuroscience; 1982; 7(11):2577-607. PubMed ID: 7155343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex.
    DeFelipe J; Hendry SH; Jones EG; Schmechel D
    J Comp Neurol; 1985 Jan; 231(3):364-84. PubMed ID: 2981907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Axo-somatic inhibition of projection neurons in the lateral nucleus of amygdala in human temporal lobe epilepsy: an ultrastructural study.
    Yilmazer-Hanke DM; Faber-Zuschratter H; Blümcke I; Bickel M; Becker A; Mawrin C; Schramm J
    Exp Brain Res; 2007 Mar; 177(3):384-99. PubMed ID: 17006689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus.
    Arellano JI; Muñoz A; Ballesteros-Yáñez I; Sola RG; DeFelipe J
    Brain; 2004 Jan; 127(Pt 1):45-64. PubMed ID: 14534159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synaptic Reorganization of the Perisomatic Inhibitory Network in Hippocampi of Temporal Lobe Epileptic Patients.
    Wittner L; Maglóczky Z
    Biomed Res Int; 2017; 2017():7154295. PubMed ID: 28116310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex.
    Thomson AM; West DC; Hahn J; Deuchars J
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):81-102. PubMed ID: 8910198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings.
    Shu Y; Duque A; Yu Y; Haider B; McCormick DA
    J Neurophysiol; 2007 Jan; 97(1):746-60. PubMed ID: 17093120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vesicular glutamate transporter 1 immunostaining in the normal and epileptic human cerebral cortex.
    Alonso-Nanclares L; De Felipe J
    Neuroscience; 2005; 134(1):59-68. PubMed ID: 15961236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro.
    Wittner L; Huberfeld G; Clémenceau S; Eross L; Dezamis E; Entz L; Ulbert I; Baulac M; Freund TF; Maglóczky Z; Miles R
    Brain; 2009 Nov; 132(Pt 11):3032-46. PubMed ID: 19767413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrastructural analysis of synaptic relationships of intracellularly stained pyramidal cell axons in piriform cortex.
    Haberly LB; Presto S
    J Comp Neurol; 1986 Jun; 248(4):464-74. PubMed ID: 2424948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of constitutive functional γ-aminobutyric acid type A-B receptor crosstalk in layer 5 pyramidal neurons of human epileptic temporal cortex.
    Martinello K; Sciaccaluga M; Morace R; Mascia A; Arcella A; Esposito V; Fucile S
    Epilepsia; 2018 Feb; 59(2):449-459. PubMed ID: 29283181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parvalbumin-immunoreactive neurons make inhibitory synapses on pyramidal cells in the human amygdala: a light and electron microscopic study.
    Sorvari H; Miettinen R; Soininen H; Pitkänen A
    Neurosci Lett; 1996 Oct; 217(2-3):93-6. PubMed ID: 8916080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells.
    Megías M; Emri Z; Freund TF; Gulyás AI
    Neuroscience; 2001; 102(3):527-40. PubMed ID: 11226691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex.
    Kawaguchi Y; Kubota Y
    Neuroscience; 1998 Aug; 85(3):677-701. PubMed ID: 9639265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synaptic connections of axo-axonic (chandelier) cells in human epileptic temporal cortex.
    Kisvárday ZF; Adams CB; Smith AD
    Neuroscience; 1986 Dec; 19(4):1179-86. PubMed ID: 3029627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Axo-axonic chandelier cells in the rat fascia dentata: Golgi-electron microscopy and immunocytochemical studies.
    Soriano E; Nitsch R; Frotscher M
    J Comp Neurol; 1990 Mar; 293(1):1-25. PubMed ID: 1690225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chandelier cell axons identified by parvalbumin-immunoreactivity in the normal human temporal cortex and in Alzheimer's disease.
    Fonseca M; Soriano E; Ferrer I; Martinez A; Tuñon T
    Neuroscience; 1993 Aug; 55(4):1107-16. PubMed ID: 8232900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron microscopic immunocytochemical study of the distribution of parvalbumin-containing neurons and axon terminals in the primate dentate gyrus and Ammon's horn.
    Ribak CE; Seress L; Leranth C
    J Comp Neurol; 1993 Jan; 327(2):298-321. PubMed ID: 8425946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synapses formed by normal and abnormal hippocampal mossy fibers.
    Frotscher M; Jonas P; Sloviter RS
    Cell Tissue Res; 2006 Nov; 326(2):361-7. PubMed ID: 16819624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.