These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9288948)

  • 21. Effect of physiological ADP concentrations on contraction of single skinned fibers from rabbit fast and slow muscles.
    Chase PB; Kushmerick MJ
    Am J Physiol; 1995 Feb; 268(2 Pt 1):C480-9. PubMed ID: 7864087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in MM-CK conformational mobility upon formation of the ADP-Mg(2+)-NO(3)(-)-creatine transition state analogue complex as detected by hydrogen/deuterium exchange.
    Mazon H; Marcillat O; Forest E; Vial C
    Biochemistry; 2003 Nov; 42(46):13596-604. PubMed ID: 14622006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of sea-urchin sperm motility is accompanied by an increase in the creatine kinase exchange flux.
    Dorsten FA; Wyss M; Wallimann T; Nicolay K
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):411-6. PubMed ID: 9230121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adenine nucleotide-creatine-phosphate module in myocardial metabolic system explains fast phase of dynamic regulation of oxidative phosphorylation.
    van Beek JH
    Am J Physiol Cell Physiol; 2007 Sep; 293(3):C815-29. PubMed ID: 17581855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer.
    Brindle KM; Radda GK
    Biochim Biophys Acta; 1985 Jun; 829(2):188-201. PubMed ID: 3995051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structures of manganese(II) complexes with ATP, ADP, and phosphocreatine in the reactive central complexes with creatine kinase: electron paramagnetic resonance studies with oxygen-17-labeled ligands.
    Leyh TS; Goodhart PJ; Nguyen AC; Kenyon GL; Reed GH
    Biochemistry; 1985 Jan; 24(2):308-16. PubMed ID: 2983754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen/deuterium exchange studies of native rabbit MM-CK dynamics.
    Mazon H; Marcillat O; Forest E; Vial C
    Protein Sci; 2004 Feb; 13(2):476-86. PubMed ID: 14739330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of adenosine 5'-diphosphate to creatine kinase. An investigation using intermolecular nuclear Overhauser effect measurements.
    James TL
    Biochemistry; 1976 Oct; 15(21):4724-30. PubMed ID: 974086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of limited proteolysis on rabbit muscle creatine kinase.
    Price NC; Murray S; Milner-White EJ
    Biochem J; 1981 Oct; 199(1):239-44. PubMed ID: 7039617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic properties and functional role of creatine phosphokinase in glycerinated muscle fibers--further evidence for compartmentation.
    Savabi F; Geiger PJ; Bessman SP
    Biochem Biophys Res Commun; 1983 Jul; 114(2):785-90. PubMed ID: 6882454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion transport in gills of the euryhaline fish Gillichthys mirabilis is facilitated by a phosphocreatine circuit.
    Kültz D; Somero GN
    Am J Physiol; 1995 Apr; 268(4 Pt 2):R1003-12. PubMed ID: 7733382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple analysis of the "phosphocreatine shuttle".
    Meyer RA; Sweeney HL; Kushmerick MJ
    Am J Physiol; 1984 May; 246(5 Pt 1):C365-77. PubMed ID: 6372517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial creatine kinase isoform expression does not correlate with its mode of action.
    Anflous K; Veksler V; Mateo P; Samson F; Saks V; Ventura-Clapier R
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):73-8. PubMed ID: 9078245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial creatine kinase binding to liposomes and vesicle aggregation: effect of cleavage by proteinase K.
    Granjon T; Vial C; Buchet R; Vacheron MJ
    J Protein Chem; 2001 Nov; 20(8):593-9. PubMed ID: 11890199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice.
    Janssen E; Terzic A; Wieringa B; Dzeja PP
    J Biol Chem; 2003 Aug; 278(33):30441-9. PubMed ID: 12730234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The creatine kinase reaction: a simple reaction with functional complexity.
    Sahlin K; Harris RC
    Amino Acids; 2011 May; 40(5):1363-7. PubMed ID: 21394603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Affinity modification of creatine kinase and ATP-ADP translocase in heart mitochondria: determination of their molar stoichiometry.
    Kuznetsov AV; Saks VA
    Biochem Biophys Res Commun; 1986 Jan; 134(1):359-66. PubMed ID: 3004438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proton liberation in the pre-steady state phase of creatine kinase.
    Pal PK; Khan LA; Amin M
    Indian J Biochem Biophys; 1993 Aug; 30(4):214-7. PubMed ID: 8276423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.