These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 9290062)
1. Cellobiose and cellodextrin metabolism by the ruminal bacterium Ruminococcus albus. Lou J; Dawson KA; Strobel HJ Curr Microbiol; 1997 Oct; 35(4):221-7. PubMed ID: 9290062 [TBL] [Abstract][Full Text] [Related]
2. Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola. Lou J; Dawson KA; Strobel HJ Appl Environ Microbiol; 1996 May; 62(5):1770-3. PubMed ID: 8633876 [TBL] [Abstract][Full Text] [Related]
3. Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus. Thurston B; Dawson KA; Strobel HJ Appl Environ Microbiol; 1993 Aug; 59(8):2631-7. PubMed ID: 8368849 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group. Sawano T; Saburi W; Hamura K; Matsui H; Mori H FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549 [TBL] [Abstract][Full Text] [Related]
5. Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Zhang YH; Lynd LR Appl Environ Microbiol; 2004 Mar; 70(3):1563-9. PubMed ID: 15006779 [TBL] [Abstract][Full Text] [Related]
6. Pentose utilization by the ruminal bacterium Ruminococcus albus. Thurston B; Dawson KA; Strobel HJ Appl Environ Microbiol; 1994 Apr; 60(4):1087-92. PubMed ID: 8017905 [TBL] [Abstract][Full Text] [Related]
7. Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity. Wu Y; Mao G; Fan H; Song A; Zhang YP; Chen H Sci Rep; 2017 Jul; 7(1):4849. PubMed ID: 28687766 [TBL] [Abstract][Full Text] [Related]
8. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Ha SJ; Galazka JM; Joong Oh E; Kordić V; Kim H; Jin YS; Cate JH Metab Eng; 2013 Jan; 15():134-43. PubMed ID: 23178501 [TBL] [Abstract][Full Text] [Related]
9. Hydrolytic and phosphorolytic metabolism of cellobiose by the marine aerobic bacterium Saccharophagus degradans 2-40T. Zhang H; Moon YH; Watson BJ; Suvorov M; Santos E; Sinnott CA; Hutcheson SW J Ind Microbiol Biotechnol; 2011 Aug; 38(8):1117-25. PubMed ID: 21327449 [TBL] [Abstract][Full Text] [Related]
10. Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Wells JE; Russell JB; Shi Y; Weimer PJ Appl Environ Microbiol; 1995 May; 61(5):1757-62. PubMed ID: 7646013 [TBL] [Abstract][Full Text] [Related]
11. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides. Devendran S; Abdel-Hamid AM; Evans AF; Iakiviak M; Kwon IH; Mackie RI; Cann I Sci Rep; 2016 Oct; 6():35342. PubMed ID: 27748409 [TBL] [Abstract][Full Text] [Related]
12. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria. Shi Y; Weimer PJ Appl Environ Microbiol; 1996 Mar; 62(3):1084-8. PubMed ID: 8975600 [TBL] [Abstract][Full Text] [Related]
13. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Shi Y; Odt CL; Weimer PJ Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950 [TBL] [Abstract][Full Text] [Related]
14. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Odenyo AA; Mackie RI; Stahl DA; White BA Appl Environ Microbiol; 1994 Oct; 60(10):3688-96. PubMed ID: 7527201 [TBL] [Abstract][Full Text] [Related]
15. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase. Kim H; Oh EJ; Lane ST; Lee WH; Cate JHD; Jin YS J Biotechnol; 2018 Jun; 275():53-59. PubMed ID: 29660472 [TBL] [Abstract][Full Text] [Related]
16. Evidence for transceptor function of cellodextrin transporters in Neurospora crassa. Znameroski EA; Li X; Tsai JC; Galazka JM; Glass NL; Cate JH J Biol Chem; 2014 Jan; 289(5):2610-9. PubMed ID: 24344125 [TBL] [Abstract][Full Text] [Related]
17. Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered Lee WH; Jin YS J Microbiol Biotechnol; 2021 Jul; 31(7):1035-1043. PubMed ID: 34226403 [TBL] [Abstract][Full Text] [Related]
18. Effects of Engineered Choi HJ; Jin YS; Lee WH J Microbiol Biotechnol; 2022 Jan; 32(1):117-125. PubMed ID: 34949751 [TBL] [Abstract][Full Text] [Related]
19. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis. Christopherson MR; Dawson JA; Stevenson DM; Cunningham AC; Bramhacharya S; Weimer PJ; Kendziorski C; Suen G BMC Genomics; 2014 Dec; 15(1):1066. PubMed ID: 25477200 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis. Hamura K; Saburi W; Abe S; Morimoto N; Taguchi H; Mori H; Matsui H Biosci Biotechnol Biochem; 2012; 76(4):812-8. PubMed ID: 22484959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]