These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 9290062)
21. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Kim H; Lee WH; Galazka JM; Cate JH; Jin YS Appl Microbiol Biotechnol; 2014 Feb; 98(3):1087-94. PubMed ID: 24190499 [TBL] [Abstract][Full Text] [Related]
22. Cellulolytic activity of the rumen bacterium Bacteroides succinogenes. Groleau D; Forsberg CW Can J Microbiol; 1981 May; 27(5):517-30. PubMed ID: 6788355 [TBL] [Abstract][Full Text] [Related]
23. Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium. Reichenbecher M; Lottspeich F; Bronnenmeier K Eur J Biochem; 1997 Jul; 247(1):262-7. PubMed ID: 9249035 [TBL] [Abstract][Full Text] [Related]
24. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae. Lian J; Li Y; HamediRad M; Zhao H Biotechnol Bioeng; 2014 Aug; 111(8):1521-31. PubMed ID: 24519319 [TBL] [Abstract][Full Text] [Related]
25. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Shi Y; Weimer PJ Appl Environ Microbiol; 1997 Feb; 63(2):743-8. PubMed ID: 9023951 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose. Lee WH; Jin YS J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531 [TBL] [Abstract][Full Text] [Related]
27. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase. Kawahara R; Saburi W; Odaka R; Taguchi H; Ito S; Mori H; Matsui H J Biol Chem; 2012 Dec; 287(50):42389-99. PubMed ID: 23093406 [TBL] [Abstract][Full Text] [Related]
28. Simultaneous but differential metabolism of glucose and cellobiose in Fibrobacter succinogenes cells, studied by in vivo 13C-NMR. Matheron C; Delort AM; Gaudet G; Forano E Can J Microbiol; 1996 Nov; 42(11):1091-9. PubMed ID: 8941985 [TBL] [Abstract][Full Text] [Related]
29. Kinetic characterization of a beta-glucosidase from a yeast, Candida wickerhamii. Freer SN J Biol Chem; 1993 May; 268(13):9337-42. PubMed ID: 8486628 [TBL] [Abstract][Full Text] [Related]
30. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis. Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047 [TBL] [Abstract][Full Text] [Related]
33. Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica. Lane S; Zhang S; Wei N; Rao C; Jin YS Biotechnol Bioeng; 2015 May; 112(5):1012-22. PubMed ID: 25421388 [TBL] [Abstract][Full Text] [Related]
34. Phosphorylation of glucose by a guanosine-5'-triphosphate (GTP)-dependent glucokinase in Fibrobacter succinogenes subsp. succinogenes S85. Glass TL; Sherwood JS Arch Microbiol; 1994; 162(3):180-6. PubMed ID: 7979872 [TBL] [Abstract][Full Text] [Related]
35. Cellulose and cellodextrin utilization by the cellulolytic bacterium Cytophaga hutchisonii. Zhu Y; Li H; Zhou H; Chen G; Liu W Bioresour Technol; 2010 Aug; 101(16):6432-7. PubMed ID: 20362433 [TBL] [Abstract][Full Text] [Related]
36. Biosynthesis of radiolabeled cellodextrins by the Clostridium thermocellum cellobiose and cellodextrin phosphorylases for measurement of intracellular sugars. Zhang YH; Lynd LR Appl Microbiol Biotechnol; 2006 Mar; 70(1):123-9. PubMed ID: 16402169 [TBL] [Abstract][Full Text] [Related]
37. Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Yanase H; Nozaki K; Okamoto K Biotechnol Lett; 2005 Feb; 27(4):259-63. PubMed ID: 15742147 [TBL] [Abstract][Full Text] [Related]
38. Cellobiose transport by mixed ruminal bacteria from a Cow. Kajikawa H; Masaki S Appl Environ Microbiol; 1999 Jun; 65(6):2565-9. PubMed ID: 10347044 [TBL] [Abstract][Full Text] [Related]
39. Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum. Ng TK; Zeikus JG J Bacteriol; 1982 Jun; 150(3):1391-9. PubMed ID: 6210689 [TBL] [Abstract][Full Text] [Related]
40. Expression and characterization of a glucose-tolerant β-1,4-glucosidase with wide substrate specificity from Cytophaga hutchinsonii. Zhang C; Wang X; Zhang W; Zhao Y; Lu X Appl Microbiol Biotechnol; 2017 Mar; 101(5):1919-1926. PubMed ID: 27822737 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]