These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9290222)

  • 1. Linear mixed models with heterogeneous within-cluster variances.
    Lin X; Raz J; Harlow SD
    Biometrics; 1997 Sep; 53(3):910-23. PubMed ID: 9290222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general approach for two-stage analysis of multilevel clustered non-Gaussian data.
    Chervoneva I; Iglewicz B; Hyslop T
    Biometrics; 2006 Sep; 62(3):752-9. PubMed ID: 16984317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regression analysis with missing covariate data using estimating equations.
    Zhao LP; Lipsitz S; Lew D
    Biometrics; 1996 Dec; 52(4):1165-82. PubMed ID: 8962448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling heterogeneity in clustered count data with extra zeros using compound Poisson random effect.
    Ma R; Hasan MT; Sneddon G
    Stat Med; 2009 Aug; 28(18):2356-69. PubMed ID: 19462420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A note on permutation tests for variance components in multilevel generalized linear mixed models.
    Fitzmaurice GM; Lipsitz SR; Ibrahim JG
    Biometrics; 2007 Sep; 63(3):942-6. PubMed ID: 17403100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized variance component models for clustered categorical response variables.
    Miller ME; Landis JR
    Biometrics; 1991 Mar; 47(1):33-44. PubMed ID: 2049507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust estimation of the variance in moment methods for extra-binomial and extra-Poisson variation.
    Moore DF; Tsiatis A
    Biometrics; 1991 Jun; 47(2):383-401. PubMed ID: 1912253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jackknife estimators of variance for parameter estimates from estimating equations with applications to clustered survival data.
    Lipsitz SR; Dear KB; Zhao L
    Biometrics; 1994 Sep; 50(3):842-6. PubMed ID: 7981404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of two bias-corrected covariance estimators for generalized estimating equations.
    Lu B; Preisser JS; Qaqish BF; Suchindran C; Bangdiwala SI; Wolfson M
    Biometrics; 2007 Sep; 63(3):935-41. PubMed ID: 17825023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of variance-function misspecification in analysis of longitudinal data.
    Wang YG; Lin X
    Biometrics; 2005 Jun; 61(2):413-21. PubMed ID: 16011687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Between- and within-cluster covariate effects in the analysis of clustered data.
    Neuhaus JM; Kalbfleisch JD
    Biometrics; 1998 Jun; 54(2):638-45. PubMed ID: 9629647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Statistical analysis of community-based studies -- presentation and comparison of possible solutions with reference to statistical meta-analytic methods].
    Twardella D; Bruckner T; Blettner M
    Gesundheitswesen; 2005 Jan; 67(1):48-55. PubMed ID: 15672306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using bivariate models to understand between- and within-cluster regression coefficients, with application to twin data.
    Gurrin LC; Carlin JB; Sterne JA; Dite GS; Hopper JL
    Biometrics; 2006 Sep; 62(3):745-51. PubMed ID: 16984316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite sample adjustments in estimating equations and covariance estimators for intracluster correlations.
    Preisser JS; Lu B; Qaqish BF
    Stat Med; 2008 Nov; 27(27):5764-85. PubMed ID: 18680122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical inference in generalized linear mixed models: a review.
    Tuerlinckx F; Rijmen F; Verbeke G; De Boeck P
    Br J Math Stat Psychol; 2006 Nov; 59(Pt 2):225-55. PubMed ID: 17067411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cluster pattern detection in spatial data based on Monte Carlo inference.
    Stoica RS; Gay E; Kretzschmar A
    Biom J; 2007 Aug; 49(4):505-19. PubMed ID: 17638287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating treatment means in a mixed-effect ANOVA model for bioequivalence studies.
    Hsuan FC
    Biometrics; 1993 Sep; 49(3):703-13. PubMed ID: 8241367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable selection for clustering with Gaussian mixture models.
    Maugis C; Celeux G; Martin-Magniette ML
    Biometrics; 2009 Sep; 65(3):701-9. PubMed ID: 19210744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimum Hellinger distance estimation for k-component poisson mixture with random effects.
    Xiang L; Yau KK; Van Hui Y; Lee AH
    Biometrics; 2008 Jun; 64(2):508-18. PubMed ID: 17970817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A signed-rank test for clustered data.
    Datta S; Satten GA
    Biometrics; 2008 Jun; 64(2):501-7. PubMed ID: 17970820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.