These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 929096)

  • 1. Inhibition of branched-chain amino acid degradation by ketone bodies.
    Landaas S
    Scand J Clin Lab Invest; 1977 Sep; 37(5):411-8. PubMed ID: 929096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of the glycine cleavage system by branched-chain amino acid metabolites.
    Kølvraa S
    Pediatr Res; 1979 Aug; 13(8):889-93. PubMed ID: 481963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of branched-chain amino acid oxidation in rat hemidiaphragms in vitro by glucose and ketone bodies.
    Palmer TN; Caldecourt MA; Warner JP; Sugden MC
    Biochem Int; 1985 Sep; 11(3):407-13. PubMed ID: 4062956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The valine catabolic pathway in human liver: effect of cirrhosis on enzyme activities.
    Taniguchi K; Nonami T; Nakao A; Harada A; Kurokawa T; Sugiyama S; Fujitsuka N; Shimomura Y; Hutson SM; Harris RA; Takagi H
    Hepatology; 1996 Dec; 24(6):1395-8. PubMed ID: 8938168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of leucine and alpha-ketoisocaproic acid on NAD biosynthesis from tryptophan or nicotinic acid in the isolated rat liver cells.
    Yamada O; Shin M; Sano K; Umezawa C
    Int J Vitam Nutr Res; 1983; 53(2):184-91. PubMed ID: 6885276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus.
    Beck HC; Hansen AM; Lauritsen FR
    J Appl Microbiol; 2004; 96(5):1185-93. PubMed ID: 15078537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dietary excess leucine on the levels of branched chain alpha-keto acids and ketone bodies in blood and the liver of rats.
    Yamada O; Shin M; Sano K; Umezawa C
    Int J Vitam Nutr Res; 1983; 53(2):192-8. PubMed ID: 6885277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some aspects on amino acid metabolism in relation to glucose and ketone bodies in brain cortex slices of the rat.
    Iakovou D; Linardou A; Philippides H; Chomatas H; Palaiologos G
    Prog Clin Biol Res; 1982; 102 Pt C():303-16. PubMed ID: 6132399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of ketogenesis from amino acids. II. Ketone bodies formation from alpha-ketoisocaproate, the keto-analogue of leucine, by rat liver mitochondria.
    Noda C; Ichihara A
    J Biochem; 1974 Nov; 76(5):1123-30. PubMed ID: 4452666
    [No Abstract]   [Full Text] [Related]  

  • 10. Leucine oxidation in diabetes and starvation: effects of ketone bodies on branched-chain amino acid oxidation in vitro.
    Paul HS; Adibi SA
    Metabolism; 1978 Feb; 27(2):185-200. PubMed ID: 622049
    [No Abstract]   [Full Text] [Related]  

  • 11. Reye syndrome model in rats: protection against liver abnormalities by L-carnitine and acetyl-L-carnitine.
    Visentin M; Bellasio R; Tacconi MT
    J Pharmacol Exp Ther; 1995 Nov; 275(2):1069-75. PubMed ID: 7473134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mitochondrial isovaleryl-coenzyme a dehydrogenase of arabidopsis oxidizes intermediates of leucine and valine catabolism.
    Däschner K; Couée I; Binder S
    Plant Physiol; 2001 Jun; 126(2):601-12. PubMed ID: 11402190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyridine nucleotide synthesis in human blood--effect of leucine, alpha-ketoisocaproic acid and ketone bodies.
    Yamada O; Kiyohara Y; Sano K; Umezawa C
    Int J Vitam Nutr Res; 1983; 53(4):432-7. PubMed ID: 6668145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-affinity uptake system for branched-chain amino acids in Saccharomyces cerevisiae.
    Tullin S; Gjermansen C; Kielland-Brandt MC
    Yeast; 1991 Dec; 7(9):933-41. PubMed ID: 1803818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No significant net uptake of branched chain amino acids by the liver of fed-mid pregnant rats.
    Pastor-Anglada M; Remesar X
    Biochem Int; 1986 Jun; 12(6):957-62. PubMed ID: 3741451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic reconstructions identify plant 3-methylglutaconyl-CoA hydratase that is crucial for branched-chain amino acid catabolism in mitochondria.
    Latimer S; Li Y; Nguyen TTH; Soubeyrand E; Fatihi A; Elowsky CG; Block A; Pichersky E; Basset GJ
    Plant J; 2018 Jul; 95(2):358-370. PubMed ID: 29742810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branched chain amino acid oxidation in cultured rat skeletal muscle cells. Selective inhibition by clofibric acid.
    Pardridge WM; Casanello-Ertl D; Duducgian-Vartavarian L
    J Clin Invest; 1980 Jul; 66(1):88-93. PubMed ID: 7400311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential alterations in branched-chain amino acid decarboxylation in liver of hypophysectomized rats.
    Sullivan SG; Potter DA; Krauss MR; Dancis J; Cox RP
    Experientia; 1979 Aug; 35(8):1043-4. PubMed ID: 477869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxisomal metabolism of propionic acid and isobutyric acid in plants.
    Lucas KA; Filley JR; Erb JM; Graybill ER; Hawes JW
    J Biol Chem; 2007 Aug; 282(34):24980-9. PubMed ID: 17580301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspects of the regulation of the metabolism of branched-chain amino acids.
    Krebs HA; Lund P
    Adv Enzyme Regul; 1976; 15():375-94. PubMed ID: 19935
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.