These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9292062)

  • 1. Tenascin is overexpressed in vitiligo lesional skin and inhibits melanocyte adhesion.
    Le Poole IC; van den Wijngaard RM; Westerhof W; Das PK
    Br J Dermatol; 1997 Aug; 137(2):171-8. PubMed ID: 9292062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunolocalization of tenascin-C in vitiligo.
    Abdou AG; Maraee AH; Shoeib MA; Elbana R
    Appl Immunohistochem Mol Morphol; 2012 Oct; 20(5):501-11. PubMed ID: 22495383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased tenascin C and DKK1 in vitiligo: possible role of fibroblasts in acral and non-acral disease.
    Esmat SM; Hadidi HHE; Hegazy RA; Gawdat HI; Tawdy AM; Fawzy MM; AbdelHalim DM; Sultan OS; Shaker OG
    Arch Dermatol Res; 2018 Jul; 310(5):425-430. PubMed ID: 29605863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance.
    Le Poole IC; van den Wijngaard RM; Westerhof W; Das PK
    Am J Pathol; 1996 Apr; 148(4):1219-28. PubMed ID: 8644862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased expression of neuregulin1 in the lesional skin of vitiligo patients.
    Rani S; Kumari U; Bhardwaj S; Parsad D; Sharma VL; Kumar R
    Int J Dermatol; 2019 Feb; 58(2):242-249. PubMed ID: 30074619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered levels of LXR-α: crucial implications in the pathogenesis of vitiligo.
    Kumar R; Parsad D; Kanwar AJ; Kaul D
    Exp Dermatol; 2012 Nov; 21(11):853-8. PubMed ID: 23163651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions.
    Moretti S; Spallanzani A; Amato L; Hautmann G; Gallerani I; Fabiani M; Fabbri P
    Pigment Cell Res; 2002 Apr; 15(2):87-92. PubMed ID: 11936274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies.
    Reichert Faria A; Jung JE; Silva de Castro CC; de Noronha L
    Pathol Res Pract; 2017 Mar; 213(3):199-204. PubMed ID: 28214208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo.
    Gauthier Y; Cario-Andre M; Lepreux S; Pain C; Taïeb A
    Br J Dermatol; 2003 Jan; 148(1):95-101. PubMed ID: 12534601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The melanocytorrhagic hypothesis of vitiligo tested on pigmented, stressed, reconstructed epidermis.
    Cario-André M; Pain C; Gauthier Y; Taïeb A
    Pigment Cell Res; 2007 Oct; 20(5):385-93. PubMed ID: 17850512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glabrous lesional stem cells differentiated into functional melanocytes: new hope for repigmentation.
    Kumar R; Parsad D; Rani S; Bhardwaj S; Srivastav N
    J Eur Acad Dermatol Venereol; 2016 Sep; 30(9):1555-60. PubMed ID: 27538731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis.
    Seleit I; Bakry OA; Abdou AG; Dawoud NM
    Ann Diagn Pathol; 2014 Jun; 18(3):117-24. PubMed ID: 24560443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The expression of the c-kit receptor by epidermal melanocytes may be reduced in vitiligo.
    Norris A; Todd C; Graham A; Quinn AG; Thody AJ
    Br J Dermatol; 1996 Feb; 134(2):299-306. PubMed ID: 8746346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of CCN3 (NOV) and DDR1 in normal melanocytes and vitiligo skin.
    Ricard AS; Pain C; Daubos A; Ezzedine K; Lamrissi-Garcia I; Bibeyran A; Guyonnet-Dupérat V; Taieb A; Cario-André M
    Exp Dermatol; 2012 Jun; 21(6):411-6. PubMed ID: 22507556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of extracellular matrix proteins in the lesional skin of vitiligo patients.
    Rani S; Pervaiz N; Parsad D; Kumar R
    Arch Dermatol Res; 2023 Oct; 315(8):2393-2402. PubMed ID: 37209167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients.
    van den Boorn JG; Konijnenberg D; Dellemijn TA; van der Veen JP; Bos JD; Melief CJ; Vyth-Dreese FA; Luiten RM
    J Invest Dermatol; 2009 Sep; 129(9):2220-32. PubMed ID: 19242513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant expression of complement regulatory proteins, membrane cofactor protein and decay accelerating factor, in the involved epidermis of patients with vitiligo.
    van den Wijngaard RM; Asghar SS; Pijnenborg AC; Tigges AJ; Westerhof W; Das PK
    Br J Dermatol; 2002 Jan; 146(1):80-7. PubMed ID: 11841370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying the dysfunction of melanocytes in vitiligo epidermis: role of SCF/KIT protein interactions and the downstream effector, MITF-M.
    Kitamura R; Tsukamoto K; Harada K; Shimizu A; Shimada S; Kobayashi T; Imokawa G
    J Pathol; 2004 Apr; 202(4):463-75. PubMed ID: 15095274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and modulation of apoptosis regulatory molecules in human melanocytes: significance in vitiligo.
    van den Wijngaard RM; Aten J; Scheepmaker A; Le Poole IC; Tigges AJ; Westerhof W; Das PK
    Br J Dermatol; 2000 Sep; 143(3):573-81. PubMed ID: 10971331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short- and long-term effects of acetylsalicylic acid treatment on the proliferation and lipid peroxidation of skin cultured melanocytes of active vitiligo.
    Zailaie MZ
    Saudi Med J; 2004 Nov; 25(11):1656-63. PubMed ID: 15573197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.