These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 9292721)

  • 1. Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats.
    Crair MC; Ruthazer ES; Gillespie DC; Stryker MP
    Neuron; 1997 Aug; 19(2):307-18. PubMed ID: 9292721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex.
    Crair MC; Ruthazer ES; Gillespie DC; Stryker MP
    J Neurophysiol; 1997 Jun; 77(6):3381-5. PubMed ID: 9212282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of the physiological effects of monocular deprivation in the kitten's visual cortex.
    Movshon JA
    J Physiol; 1976 Sep; 261(1):125-74. PubMed ID: 994027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postcritical-period reversal of effects of monocular deprivation on striate cortex cells in the cat.
    Kratz KE; Spear PD
    J Neurophysiol; 1976 May; 39(3):501-11. PubMed ID: 948005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex.
    Kim DS; Bonhoeffer T
    Nature; 1994 Aug; 370(6488):370-2. PubMed ID: 8047142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributions of synaptic vesicle proteins and GAD65 in deprived and nondeprived ocular dominance columns in layer IV of kitten primary visual cortex are unaffected by monocular deprivation.
    Silver MA; Stryker MP
    J Comp Neurol; 2000 Jul; 422(4):652-64. PubMed ID: 10861531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of different forms of monocular deprivation on primary visual cortex maps.
    Jaffer S; Vorobyov V; Sengpiel F
    Vis Neurosci; 2012 Sep; 29(4-5):247-53. PubMed ID: 22882840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-derived neurotrophic factor expands ocular dominance columns in visual cortex in monocularly deprived and nondeprived kittens but does not in adult cats.
    Hata Y; Ohshima M; Ichisaka S; Wakita M; Fukuda M; Tsumoto T
    J Neurosci; 2000 Feb; 20(3):RC57. PubMed ID: 10648732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse.
    Cang J; Kalatsky VA; Löwel S; Stryker MP
    Vis Neurosci; 2005; 22(5):685-91. PubMed ID: 16332279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Neuronal connections of ocular dominance columns in the cortex of monocularly deprived cats].
    Alekseenko SV; Toporova SN; Shkorbatova PIu
    Ross Fiziol Zh Im I M Sechenova; 2007 Sep; 93(9):1024-34. PubMed ID: 18030800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid restoration of functional input to the visual cortex of the cat after brief monocular deprivation.
    Blakemore C; Hawken MJ
    J Physiol; 1982 Jun; 327():463-87. PubMed ID: 7120147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial analysis of ocular dominance patterns in monocularly deprived cats.
    Schmidt KE; Stephan M; Singer W; Löwel S
    Cereb Cortex; 2002 Aug; 12(8):783-96. PubMed ID: 12122027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Maffei L; Berardi N; Domenici L; Parisi V; Pizzorusso T
    J Neurosci; 1992 Dec; 12(12):4651-62. PubMed ID: 1334503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic recordings from single sites of kitten striate cortex during experience-dependent modifications of receptive-field properties.
    Mioche L; Singer W
    J Neurophysiol; 1989 Jul; 62(1):185-97. PubMed ID: 2754471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of prior visual experience on cortical recovery from the effects of unilateral eyelid suture in kittens.
    Blasdel GG; Pettigrew JD
    J Physiol; 1978 Jan; 274():601-19. PubMed ID: 625011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex.
    Nakagama H; Tani T; Tanaka S
    Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of binocular responses after brief monocular deprivation in kittens.
    Kameyama K; Hata Y; Tsumoto T
    Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of lateral inhibitory interactions in visual cortex of monocularly deprived cats.
    Kasamatsu T; Kitano M; Sutter EE; Norcia AM
    Vision Res; 1998 Jan; 38(1):1-12. PubMed ID: 9474370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The critical period for ocular dominance plasticity in the Ferret's visual cortex.
    Issa NP; Trachtenberg JT; Chapman B; Zahs KR; Stryker MP
    J Neurosci; 1999 Aug; 19(16):6965-78. PubMed ID: 10436053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term monocular deprivation alters early components of visual evoked potentials.
    Lunghi C; Berchicci M; Morrone MC; Di Russo F
    J Physiol; 2015 Oct; 593(19):4361-72. PubMed ID: 26119530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.