These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9292969)

  • 1. The calcium channel and the organization of the presynaptic transmitter release face.
    Stanley EF
    Trends Neurosci; 1997 Sep; 20(9):404-9. PubMed ID: 9292969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of transmitter release by action potential duration at the hippocampal CA3-CA1 synapse.
    Qian J; Saggau P
    J Neurophysiol; 1999 Jan; 81(1):288-98. PubMed ID: 9914289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic alpha2-receptors regulate reverse Na+/Ca2+-exchange and transmitter release in Na+-loaded peripheral sympathetic nerves.
    Török TL; Nagykáldi Z; Sáska Z; Kovács T; Nada SA; Zilliikens S; Magyar K; Sylvester Vizi E
    Neurochem Int; 2004 Oct; 45(5):699-711. PubMed ID: 15234113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N type Ca2+ channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes.
    Khanna R; Li Q; Sun L; Collins TJ; Stanley EF
    Neuroscience; 2006 Jul; 140(4):1201-8. PubMed ID: 16757118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion channels in presynaptic nerve terminals and control of transmitter release.
    Meir A; Ginsburg S; Butkevich A; Kachalsky SG; Kaiserman I; Ahdut R; Demirgoren S; Rahamimoff R
    Physiol Rev; 1999 Jul; 79(3):1019-88. PubMed ID: 10390521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic inhibition of elicited neurotransmitter release.
    Wu LG; Saggau P
    Trends Neurosci; 1997 May; 20(5):204-12. PubMed ID: 9141196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor-mediated regulation of calcium channels and neurotransmitter release.
    Miller RJ
    FASEB J; 1990 Dec; 4(15):3291-9. PubMed ID: 1979294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium currents, transmitter release and facilitation of release at voltage-clamped crayfish nerve terminals.
    Wright SN; Brodwick MS; Bittner GD
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):363-78. PubMed ID: 8910222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic calcium channels: pharmacology and regulation.
    Tareilus E; Breer H
    Neurochem Int; 1995 Jun; 26(6):539-58. PubMed ID: 7670358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bidirectional modulation of transmitter release by calcium channel/syntaxin interactions in vivo.
    Keith RK; Poage RE; Yokoyama CT; Catterall WA; Meriney SD
    J Neurosci; 2007 Jan; 27(2):265-9. PubMed ID: 17215385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of G-protein-mediated Ca2+ channel inhibition for neurotransmitter release and facilitation.
    Bertram R; Behan M
    J Comput Neurosci; 1999; 7(3):197-211. PubMed ID: 10596833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of transmitter release via presynaptic ligand-gated ion channels.
    Schicker KW; Dorostkar MM; Boehm S
    Curr Mol Pharmacol; 2008 Jun; 1(2):106-29. PubMed ID: 20021427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Ca2+ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction.
    Katz E; Ferro PA; Cherksey BD; Sugimori M; Llinás R; Uchitel OD
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):695-706. PubMed ID: 7473230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic lonotropic receptors.
    Dorostkar MM; Boehm S
    Handb Exp Pharmacol; 2008; (184):479-527. PubMed ID: 18064423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics.
    Rozov A; Burnashev N; Sakmann B; Neher E
    J Physiol; 2001 Mar; 531(Pt 3):807-26. PubMed ID: 11251060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmitter release face Ca2+ channel clusters persist at isolated presynaptic terminals.
    Sun L; Li Q; Khanna R; Chan AW; Wong F; Stanley EF
    Eur J Neurosci; 2006 Mar; 23(5):1391-6. PubMed ID: 16553800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.
    Cooper RL; Winslow JL; Govind CK; Atwood HL
    J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotine-evoked transmitter release from synaptosomes: functional association of specific presynaptic acetylcholine receptors and voltage-gated calcium channels.
    Kulak JM; McIntosh JM; Yoshikami D; Olivera BM
    J Neurochem; 2001 Jun; 77(6):1581-9. PubMed ID: 11413241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relation between transmitter release and Ca2+ entry at the mouse motor nerve terminal: role of stochastic factors causing heterogeneity.
    Quastel DM; Guan YY; Saint DA
    Neuroscience; 1992 Dec; 51(3):657-71. PubMed ID: 1362600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of vesicle traffic and neurotransmitter release in isolated nerve terminals.
    Ghijsen WE; Leenders AG; Lopes da Silva FH
    Neurochem Res; 2003 Oct; 28(10):1443-52. PubMed ID: 14570389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.