These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9292969)

  • 21. Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release.
    Catterall WA
    Ann N Y Acad Sci; 1999 Apr; 868():144-59. PubMed ID: 10414292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery.
    Spafford JD; Zamponi GW
    Curr Opin Neurobiol; 2003 Jun; 13(3):308-14. PubMed ID: 12850215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autoreceptors, membrane potential and the regulation of transmitter release.
    Parnas H; Segel L; Dudel J; Parnas I
    Trends Neurosci; 2000 Feb; 23(2):60-8. PubMed ID: 10652546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium influx and transmitter release in a fast CNS synapse.
    Borst JG; Sakmann B
    Nature; 1996 Oct; 383(6599):431-4. PubMed ID: 8837774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Presynaptic inhibition of calcium-dependent and -independent release elicited with ionomycin, gadolinium, and alpha-latrotoxin in the hippocampus.
    Capogna M; Gähwiler BH; Thompson SM
    J Neurophysiol; 1996 May; 75(5):2017-28. PubMed ID: 8734600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of calcium-activated potassium channels in transmitter release at the squid giant synapse.
    Augustine GJ; Charlton MP; Horn R
    J Physiol; 1988 Apr; 398():149-64. PubMed ID: 2455797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Presynaptic GABA(B) receptors regulate retinohypothalamic tract synaptic transmission by inhibiting voltage-gated Ca2+ channels.
    Moldavan MG; Irwin RP; Allen CN
    J Neurophysiol; 2006 Jun; 95(6):3727-41. PubMed ID: 16709723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-domain/bound calcium hypothesis of transmitter release and facilitation.
    Bertram R; Sherman A; Stanley EF
    J Neurophysiol; 1996 May; 75(5):1919-31. PubMed ID: 8734591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isoflurane inhibits transmitter release and the presynaptic action potential.
    Wu XS; Sun JY; Evers AS; Crowder M; Wu LG
    Anesthesiology; 2004 Mar; 100(3):663-70. PubMed ID: 15108983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling study of the effects of overlapping Ca2+ microdomains on neurotransmitter release.
    Bertram R; Smith GD; Sherman A
    Biophys J; 1999 Feb; 76(2):735-50. PubMed ID: 9929478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ca(2+) channels and transmitter release at the active zone.
    Schneggenburger R; Han Y; Kochubey O
    Cell Calcium; 2012; 52(3-4):199-207. PubMed ID: 22682961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3,4-Diaminopyridine masks the inhibition of noradrenaline release from chick sympathetic neurons via presynaptic alpha 2-adrenoceptors: insights into the role of N- and L-type calcium channels.
    Dolezal V; Huang HY; Schobert A; Hertting G
    Brain Res; 1996 May; 721(1-2):101-10. PubMed ID: 8793089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Action potentials must admit calcium to evoke transmitter release.
    Mulkey RM; Zucker RS
    Nature; 1991 Mar; 350(6314):153-5. PubMed ID: 1672444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for a voltage-dependent enhancement of neurotransmitter release mediated via the synaptic protein interaction site of N-type Ca2+ channels.
    Mochida S; Yokoyama CT; Kim DK; Itoh K; Catterall WA
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14523-8. PubMed ID: 9826733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction.
    Shahrezaei V; Cao A; Delaney KR
    J Neurosci; 2006 Dec; 26(51):13240-9. PubMed ID: 17182774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single calcium channels and acetylcholine release at a presynaptic nerve terminal.
    Stanley EF
    Neuron; 1993 Dec; 11(6):1007-11. PubMed ID: 8274272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses.
    Uchitel OD; Protti DA; Sanchez V; Cherksey BD; Sugimori M; Llinás R
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3330-3. PubMed ID: 1348859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual and opposing roles of presynaptic Ca2+ influx for spontaneous GABA release from rat medial preoptic nerve terminals.
    Druzin M; Haage D; Malinina E; Johansson S
    J Physiol; 2002 Jul; 542(Pt 1):131-46. PubMed ID: 12096057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions.
    Rosato Siri MD; Uchitel OD
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):533-40. PubMed ID: 9852333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: a monte carlo study.
    Shahrezaei V; Delaney KR
    Biophys J; 2004 Oct; 87(4):2352-64. PubMed ID: 15454435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.