These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 9293014)
1. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Herman DC; Zhang Y; Miller RM Appl Environ Microbiol; 1997 Sep; 63(9):3622-7. PubMed ID: 9293014 [TBL] [Abstract][Full Text] [Related]
2. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Shreve GS; Inguva S; Gunnam S Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984 [TBL] [Abstract][Full Text] [Related]
3. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. Noordman WH; Wachter JH; de Boer GJ; Janssen DB J Biotechnol; 2002 Mar; 94(2):195-212. PubMed ID: 11796172 [TBL] [Abstract][Full Text] [Related]
4. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Zhang Y; Miller RM Appl Environ Microbiol; 1992 Oct; 58(10):3276-82. PubMed ID: 1444363 [TBL] [Abstract][Full Text] [Related]
5. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Zhang Y; Miller RM Appl Environ Microbiol; 1994 Jun; 60(6):2101-6. PubMed ID: 8031099 [TBL] [Abstract][Full Text] [Related]
6. Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Holden PA; LaMontagne MG; Bruce AK; Miller WG; Lindow SE Appl Environ Microbiol; 2002 May; 68(5):2509-18. PubMed ID: 11976128 [TBL] [Abstract][Full Text] [Related]
7. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Noordman WH; Janssen DB Appl Environ Microbiol; 2002 Sep; 68(9):4502-8. PubMed ID: 12200306 [TBL] [Abstract][Full Text] [Related]
8. Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Zhong H; Liu G; Jiang Y; Brusseau ML; Liu Z; Liu Y; Zeng G Colloids Surf B Biointerfaces; 2016 Mar; 139():244-8. PubMed ID: 26722821 [TBL] [Abstract][Full Text] [Related]
9. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Sotirova A; Spasova D; Vasileva-Tonkova E; Galabova D Microbiol Res; 2009; 164(3):297-303. PubMed ID: 17416508 [TBL] [Abstract][Full Text] [Related]
10. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. Beal R; Betts WB J Appl Microbiol; 2000 Jul; 89(1):158-68. PubMed ID: 10945793 [TBL] [Abstract][Full Text] [Related]
11. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. Dean SM; Jin Y; Cha DK; Wilson SV; Radosevich M J Environ Qual; 2001; 30(4):1126-33. PubMed ID: 11476488 [TBL] [Abstract][Full Text] [Related]
12. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater. Vasileva-Tonkova E; Sotirova A; Galabova D Curr Microbiol; 2011 Feb; 62(2):427-33. PubMed ID: 20680280 [TBL] [Abstract][Full Text] [Related]
13. Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction? Liu Y; Zeng G; Zhong H; Wang Z; Liu Z; Cheng M; Liu G; Yang X; Liu S J Hazard Mater; 2017 Jan; 322(Pt B):394-401. PubMed ID: 27773441 [TBL] [Abstract][Full Text] [Related]
14. [Effects of rhamnolipid on the biodegradation of n-hexadecane by microorganism and the cell surface hydrophobicity]. Chen YJ; Wang HQ; Wang R; Yun Y Huan Jing Ke Xue; 2007 Sep; 28(9):2117-22. PubMed ID: 17990568 [TBL] [Abstract][Full Text] [Related]
15. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. Koch AK; Käppeli O; Fiechter A; Reiser J J Bacteriol; 1991 Jul; 173(13):4212-9. PubMed ID: 1648079 [TBL] [Abstract][Full Text] [Related]
16. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on Wolf DC; Gan J Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872 [TBL] [Abstract][Full Text] [Related]
17. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant. Patowary R; Patowary K; Kalita MC; Deka S Appl Biochem Biotechnol; 2016 Oct; 180(3):383-399. PubMed ID: 27142272 [TBL] [Abstract][Full Text] [Related]
18. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795 [TBL] [Abstract][Full Text] [Related]
19. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil. Chang JS; Cha DK; Radosevich M; Jin Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(6):611-6. PubMed ID: 25837563 [TBL] [Abstract][Full Text] [Related]
20. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. Whang LM; Liu PW; Ma CC; Cheng SS J Hazard Mater; 2008 Feb; 151(1):155-63. PubMed ID: 17614195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]