These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 9293014)
41. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Raza ZA; Khan MS; Khalid ZM; Rehman A Biotechnol Lett; 2006 Oct; 28(20):1623-31. PubMed ID: 16955358 [TBL] [Abstract][Full Text] [Related]
42. Molecular analysis of surfactant-driven microbial population shifts in hydrocarbon-contaminated soil. Colores GM; Macur RE; Ward DM; Inskeep WP Appl Environ Microbiol; 2000 Jul; 66(7):2959-64. PubMed ID: 10877792 [TBL] [Abstract][Full Text] [Related]
43. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Nie M; Yin X; Ren C; Wang Y; Xu F; Shen Q Biotechnol Adv; 2010; 28(5):635-43. PubMed ID: 20580808 [TBL] [Abstract][Full Text] [Related]
44. Production of rhamnolipid surfactant and its application in bioscouring of cotton fabric. Raza ZA; Rehman A; Hussain MT; Masood R; Ul Haq A; Saddique MT; Javid A; Ahmad N Carbohydr Res; 2014 Jun; 391():97-105. PubMed ID: 24792318 [TBL] [Abstract][Full Text] [Related]
45. Influence of biosurfactant on the diesel oil remediation in soil-water system. Li YY; Zheng XL; Li B J Environ Sci (China); 2006; 18(3):587-90. PubMed ID: 17294662 [TBL] [Abstract][Full Text] [Related]
46. Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Benincasa M Curr Microbiol; 2007 Jun; 54(6):445-9. PubMed ID: 17457644 [TBL] [Abstract][Full Text] [Related]
47. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. Abbasi H; Hamedi MM; Lotfabad TB; Zahiri HS; Sharafi H; Masoomi F; Moosavi-Movahedi AA; Ortiz A; Amanlou M; Noghabi KA J Biosci Bioeng; 2012 Feb; 113(2):211-9. PubMed ID: 22036074 [TBL] [Abstract][Full Text] [Related]
48. The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortium. Bak F; Bonnichsen L; Jørgensen NO; Nicolaisen MH; Nybroe O Appl Microbiol Biotechnol; 2015 Feb; 99(3):1475-83. PubMed ID: 25216581 [TBL] [Abstract][Full Text] [Related]
50. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces. Zhong H; Jiang Y; Zeng G; Liu Z; Liu L; Liu Y; Yang X; Lai M; He Y J Hazard Mater; 2015 Mar; 285():383-8. PubMed ID: 25528238 [TBL] [Abstract][Full Text] [Related]
51. Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1. Santa Anna LM; Sebastian GV; Pereira N; Alves TL; Menezes EP; Freire DM Appl Biochem Biotechnol; 2001; 91-93():459-67. PubMed ID: 11963874 [TBL] [Abstract][Full Text] [Related]
52. Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems. Ahmad Z; Zhang X; Imran M; Zhong H; Andleeb S; Zulekha R; Liu G; Ahmad I; Coulon F Ecotoxicol Environ Saf; 2021 Jan; 207():111514. PubMed ID: 33254394 [TBL] [Abstract][Full Text] [Related]
53. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S; Jayachandran K J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038 [TBL] [Abstract][Full Text] [Related]
54. Toxic effect of biosurfactant addition on the biodegradation of phenanthrene. Shin KH; Ahn Y; Kim KW Environ Toxicol Chem; 2005 Nov; 24(11):2768-74. PubMed ID: 16398112 [TBL] [Abstract][Full Text] [Related]
56. Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4. Pornsunthorntawee O; Chavadej S; Rujiravanit R Colloids Surf B Biointerfaces; 2009 Aug; 72(1):6-15. PubMed ID: 19380215 [TBL] [Abstract][Full Text] [Related]
57. Stimulatory effects of biosurfactant produced by Pseudomonas aeruginosa BSZ-07 on rice straw decomposing. Zhang Q; Cai W; Wang J J Environ Sci (China); 2008; 20(8):975-80. PubMed ID: 18817078 [TBL] [Abstract][Full Text] [Related]
58. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Ochsner UA; Koch AK; Fiechter A; Reiser J J Bacteriol; 1994 Apr; 176(7):2044-54. PubMed ID: 8144472 [TBL] [Abstract][Full Text] [Related]
59. Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils. Camilios Neto D; Meira JA; Tiburtius E; Zamora PP; Bugay C; Mitchell DA; Krieger N Biotechnol J; 2009 May; 4(5):748-55. PubMed ID: 19452471 [TBL] [Abstract][Full Text] [Related]
60. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils. Xia WJ; Luo ZB; Dong HP; Yu L; Cui QF; Bi YQ Appl Biochem Biotechnol; 2012 Mar; 166(5):1148-66. PubMed ID: 22198867 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]