These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 9293024)
1. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Whyte LG; Bourbonniére L; Greer CW Appl Environ Microbiol; 1997 Sep; 63(9):3719-23. PubMed ID: 9293024 [TBL] [Abstract][Full Text] [Related]
2. Assessment of the biodegradation potential of psychrotrophic microorganisms. Whyte LG; Greer CW; Inniss WE Can J Microbiol; 1996 Feb; 42(2):99-106. PubMed ID: 8742353 [TBL] [Abstract][Full Text] [Related]
3. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Sanseverino J; Applegate BM; King JM; Sayler GS Appl Environ Microbiol; 1993 Jun; 59(6):1931-7. PubMed ID: 8328809 [TBL] [Abstract][Full Text] [Related]
4. Extraction and purification of microbial DNA from petroleum-contaminated soils and detection of low numbers of toluene, octane and pesticide degraders by multiplex polymerase chain reaction and Southern analysis. Knaebel DB; Crawford RL Mol Ecol; 1995 Oct; 4(5):579-91. PubMed ID: 7582166 [TBL] [Abstract][Full Text] [Related]
5. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Ma Y; Wang L; Shao Z Environ Microbiol; 2006 Mar; 8(3):455-65. PubMed ID: 16478452 [TBL] [Abstract][Full Text] [Related]
6. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations. Liu Q; Tang J; Liu X; Song B; Zhen M; Ashbolt NJ J Appl Microbiol; 2017 Oct; 123(4):875-885. PubMed ID: 28763134 [TBL] [Abstract][Full Text] [Related]
7. [Analysis of aromatic hydrocarbon catabolic genes in strains isolated from soil in Patagonia]. Vacca GS; Kiesel B; Wünsche L; Pucci OH Rev Argent Microbiol; 2002; 34(3):138-49. PubMed ID: 12415896 [TBL] [Abstract][Full Text] [Related]
8. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil. Milcic-Terzic J; Lopez-Vidal Y; Vrvic MM; Saval S Bioresour Technol; 2001 May; 78(1):47-54. PubMed ID: 11265787 [TBL] [Abstract][Full Text] [Related]
9. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Margesin R; Labbé D; Schinner F; Greer CW; Whyte LG Appl Environ Microbiol; 2003 Jun; 69(6):3085-92. PubMed ID: 12788702 [TBL] [Abstract][Full Text] [Related]
10. Biodegradation of binary mixtures of octane with benzene, toluene, ethylbenzene or xylene (BTEX): insights on the potential of Burkholderia, Pseudomonas and Cupriavidus isolates. Bacosa HP; Mabuhay-Omar JA; Balisco RAT; Omar DM; Inoue C World J Microbiol Biotechnol; 2021 Jun; 37(7):122. PubMed ID: 34151386 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Guermouche M'rassi A; Bensalah F; Gury J; Duran R Environ Sci Pollut Res Int; 2015 Oct; 22(20):15332-46. PubMed ID: 25813636 [TBL] [Abstract][Full Text] [Related]
13. Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Yang Y; Wang J; Liao J; Xie S; Huang Y Appl Microbiol Biotechnol; 2015 Feb; 99(4):1935-46. PubMed ID: 25236802 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Shahi A; Aydin S; Ince B; Ince O Ecotoxicol Environ Saf; 2016 Mar; 125():153-60. PubMed ID: 26685788 [TBL] [Abstract][Full Text] [Related]
15. Effects of diurnal temperature variation on microbial community and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site. Akbari A; Ghoshal S Environ Microbiol; 2015 Dec; 17(12):4916-28. PubMed ID: 25808640 [TBL] [Abstract][Full Text] [Related]
16. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Lee Y; Lee Y; Jeon CO Sci Rep; 2019 Jan; 9(1):860. PubMed ID: 30696831 [TBL] [Abstract][Full Text] [Related]
17. Metagenomic analysis of a thermophilic bacterial consortium and its use in the bioremediation of a petroleum-contaminated soil. Peng L; Hou J; Zhang Y; Wang B; Zhang Y; Zhao K; Wang Q; Christie P; Liu W; Luo Y Chemosphere; 2024 Jul; 360():142379. PubMed ID: 38777200 [TBL] [Abstract][Full Text] [Related]
18. Impacts of Arctic diesel contamination on microbial community composition and degradative gene abundance during hydrocarbon biodegradation with and without nutrients: A case study of seven sub-Arctic soils. Kundu A; Harrisson O; Ghoshal S Sci Total Environ; 2023 May; 871():161777. PubMed ID: 36709895 [TBL] [Abstract][Full Text] [Related]
19. Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Mittal A; Singh P Indian J Exp Biol; 2009 Sep; 47(9):760-5. PubMed ID: 19957890 [TBL] [Abstract][Full Text] [Related]
20. Genome Analysis of Naphthalene-Degrading Kim J; Park W J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]