These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9293526)

  • 21. Near image size magnification for optical instruments in general.
    Harris WF
    Optom Vis Sci; 2003 Aug; 80(8):606-8. PubMed ID: 12917580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Le Grand eye for the study of ocular chromatic aberration.
    Villegas ER; Carretero L; Fimia A
    Ophthalmic Physiol Opt; 1996 Nov; 16(6):528-31. PubMed ID: 8944201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of age, decentration, aberrations and pupil size on subjective image quality with concentric bifocal optics.
    Rio D; Woog K; Legras R
    Ophthalmic Physiol Opt; 2016 Jul; 36(4):411-20. PubMed ID: 27196105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models.
    Song H; Yuan X; Tang X
    BMC Ophthalmol; 2016 Jan; 16():9. PubMed ID: 26754111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Longitudinal chromatic aberration of the human infant eye.
    Wang J; Candy TR; Teel DF; Jacobs RJ
    J Opt Soc Am A Opt Image Sci Vis; 2008 Sep; 25(9):2263-70. PubMed ID: 18758552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectral discrimination in color blind animals via chromatic aberration and pupil shape.
    Stubbs AL; Stubbs CW
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):8206-11. PubMed ID: 27382180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation to the eye's chromatic aberration measured with an adaptive optics visual simulator.
    Fernandez EJ; Suchkov N; Artal P
    Opt Express; 2020 Dec; 28(25):37450-37458. PubMed ID: 33379579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multifocal lenses compensate for chromatic defocus in vertebrate eyes.
    Kröger RH; Campbell MC; Fernald RD; Wagner HJ
    J Comp Physiol A; 1999 Apr; 184(4):361-9. PubMed ID: 10377973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Letter: Retinal blur circle calculations based on the Hughes schemati eye for the rabbit.
    Hill RM; Fry GA
    Vision Res; 1974 Oct; 14(10):1037-8. PubMed ID: 4432384
    [No Abstract]   [Full Text] [Related]  

  • 30. Magnitude of lateral chromatic aberration across the retina of the human eye.
    Ogboso YU; Bedell HE
    J Opt Soc Am A; 1987 Aug; 4(8):1666-72. PubMed ID: 3625350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of chromatic aberration on visual acuity.
    Campbell FW; Gubisch RW
    J Physiol; 1967 Sep; 192(2):345-58. PubMed ID: 6050153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes.
    Guirao A; Porter J; Williams DR; Cox IG
    J Opt Soc Am A Opt Image Sci Vis; 2002 Mar; 19(3):620-8. PubMed ID: 11876329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatic aberration and optical power of a diffractive bifocal contact lens.
    Atchison DA; Ye M; Bradley A; Collins MJ; Zhang X; Rahman HA; Thibos LN
    Optom Vis Sci; 1992 Oct; 69(10):797-804. PubMed ID: 1437002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo longitudinal chromatic aberration of pseudophakic eyes.
    Siedlecki D; Jóźwik A; Zając M; Hill-Bator A; Turno-Kręcicka A
    Optom Vis Sci; 2014 Feb; 91(2):240-6. PubMed ID: 24270638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new matrix formulation of spectacle magnification using pupil magnification. II and III: High myopia corrected with contact lenses and intraocular lenses.
    García M; González C; Pascual I
    Ophthalmic Physiol Opt; 1996 Nov; 16(6):498-506. PubMed ID: 8944197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of pupil centration and diameter on ocular performance.
    Walsh G; Charman WN
    Vision Res; 1988; 28(5):659-65. PubMed ID: 3195069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New intraocular lens for achromatizing the human eye.
    López-Gil N; Montés-Micó R
    J Cataract Refract Surg; 2007 Jul; 33(7):1296-302. PubMed ID: 17586390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs.
    Bará S; Navarro R
    J Opt Soc Am A Opt Image Sci Vis; 2003 Jan; 20(1):1-10. PubMed ID: 12542312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The longitudinal chromatic aberration of the human eye, and its correction.
    Howarth PA; Bradley A
    Vision Res; 1986; 26(2):361-6. PubMed ID: 3716229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses.
    Vinas M; Gonzalez-Ramos A; Dorronsoro C; Akondi V; Garzon N; Poyales F; Marcos S
    J Refract Surg; 2017 Nov; 33(11):736-742. PubMed ID: 29117412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.