These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 9294124)
21. Molecular analysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF-alpha, lipopolysaccharide, or peptidoglycan. Hotokezaka H; Sakai E; Ohara N; Hotokezaka Y; Gonzales C; Matsuo K; Fujimura Y; Yoshida N; Nakayama K J Cell Biochem; 2007 May; 101(1):122-34. PubMed ID: 17171644 [TBL] [Abstract][Full Text] [Related]
22. Receptor activator of nuclear factor kappaB ligand (RANKL) is a key molecule of osteoclast formation for bone metastasis in a newly developed model of human neuroblastoma. Michigami T; Ihara-Watanabe M; Yamazaki M; Ozono K Cancer Res; 2001 Feb; 61(4):1637-44. PubMed ID: 11245477 [TBL] [Abstract][Full Text] [Related]
23. IL-12 inhibits TNF-alpha induced osteoclastogenesis via a T cell-independent mechanism in vivo. Yoshimatsu M; Kitaura H; Fujimura Y; Eguchi T; Kohara H; Morita Y; Yoshida N Bone; 2009 Nov; 45(5):1010-6. PubMed ID: 19651258 [TBL] [Abstract][Full Text] [Related]
24. Interleukin-1 and tumor necrosis factor activities partially account for calvarial bone resorption induced by local injection of lipopolysaccharide. Chiang CY; Kyritsis G; Graves DT; Amar S Infect Immun; 1999 Aug; 67(8):4231-6. PubMed ID: 10417196 [TBL] [Abstract][Full Text] [Related]
25. In vitro investigation of the roles of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1 in murine osteoclastogenesis. Jules J; Feng X Methods Mol Biol; 2014; 1155():109-23. PubMed ID: 24788177 [TBL] [Abstract][Full Text] [Related]
26. Dual modulation of osteoclast differentiation by lipopolysaccharide. Zou W; Bar-Shavit Z J Bone Miner Res; 2002 Jul; 17(7):1211-8. PubMed ID: 12096834 [TBL] [Abstract][Full Text] [Related]
27. Tumor necrosis factor (TNF)-induced cutaneous necrosis is mediated by TNF receptor 1. Amar S; Van Dyke TE; Eugster HP; Schultze N; Koebel P; Bluethmann H J Inflamm; 1995-1996; 47(4):180-9. PubMed ID: 9144075 [TBL] [Abstract][Full Text] [Related]
28. Osteoclast induction from bone marrow cells is due to pro-inflammatory mediators from macrophages exposed to polyethylene particles: a possible mechanism of osteolysis in failed THA. Hirashima Y; Ishiguro N; Kondo S; Iwata H J Biomed Mater Res; 2001 Aug; 56(2):177-83. PubMed ID: 11340587 [TBL] [Abstract][Full Text] [Related]
29. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637 [TBL] [Abstract][Full Text] [Related]
30. Lipopolysaccharide from Prevotella nigrescens stimulates osteoclastogenesis in cocultures of bone marrow mononuclear cells and primary osteoblasts. Chung YH; Chang EJ; Kim SJ; Kim HH; Kim HM; Lee SB; Ko JS J Periodontal Res; 2006 Aug; 41(4):288-96. PubMed ID: 16827722 [TBL] [Abstract][Full Text] [Related]
31. Corticosterone changes in response to stressors, acute and protracted actions of tumor necrosis factor-alpha, and lipopolysaccharide treatments in mice lacking the tumor necrosis factor-alpha p55 receptor gene. Hayley S; Kelly O; Anisman H Neuroimmunomodulation; 2004; 11(4):241-6. PubMed ID: 15249730 [TBL] [Abstract][Full Text] [Related]
33. Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. Itoh K; Udagawa N; Kobayashi K; Suda K; Li X; Takami M; Okahashi N; Nishihara T; Takahashi N J Immunol; 2003 Apr; 170(7):3688-95. PubMed ID: 12646634 [TBL] [Abstract][Full Text] [Related]
34. Lipopolysaccharide-induced osteoclastogenesis in Src homology 2-domain phosphatase-1-deficient viable motheaten mice. Hayashi S; Tsuneto M; Yamada T; Nose M; Yoshino M; Shultz LD; Yamazaki H Endocrinology; 2004 Jun; 145(6):2721-9. PubMed ID: 14988381 [TBL] [Abstract][Full Text] [Related]
35. Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling. Gerstenfeld LC; Cho TJ; Kon T; Aizawa T; Cruceta J; Graves BD; Einhorn TA Cells Tissues Organs; 2001; 169(3):285-94. PubMed ID: 11455125 [TBL] [Abstract][Full Text] [Related]
36. Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts. Kim MH; Ryu SY; Choi JS; Min YK; Kim SH J Cell Physiol; 2009 Dec; 221(3):618-28. PubMed ID: 19653230 [TBL] [Abstract][Full Text] [Related]
38. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. Quinn JM; Itoh K; Udagawa N; Hausler K; Yasuda H; Shima N; Mizuno A; Higashio K; Takahashi N; Suda T; Martin TJ; Gillespie MT J Bone Miner Res; 2001 Oct; 16(10):1787-94. PubMed ID: 11585342 [TBL] [Abstract][Full Text] [Related]
39. Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. Michael H; Härkönen PL; Väänänen HK; Hentunen TA J Bone Miner Res; 2005 Dec; 20(12):2224-32. PubMed ID: 16294275 [TBL] [Abstract][Full Text] [Related]
40. Compressive mechanical force augments osteoclastogenesis by bone marrow macrophages through activation of c-Fms-mediated signaling. Cho ES; Lee KS; Son YO; Jang YS; Lee SY; Kwak SY; Yang YM; Park SM; Lee JC J Cell Biochem; 2010 Dec; 111(5):1260-9. PubMed ID: 20803546 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]