These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9294463)

  • 21. Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH.
    Hansen J; Cherest H; Kielland-Brandt MC
    J Bacteriol; 1994 Oct; 176(19):6050-8. PubMed ID: 7928966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive Laboratory Evolution Reveals the Selenium Efflux Process To Improve Selenium Tolerance Mediated by the Membrane Sulfite Pump in Saccharomyces cerevisiae.
    Gong A; Liu W; Lin Y; Huang L; Xie Z
    Microbiol Spectr; 2023 Jun; 11(3):e0132623. PubMed ID: 37098949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and characterization of a sulphite-resistance gene of Saccharomyces cerevisiae.
    Casalone E; Colella CM; Daly S; Fontana S; Torricelli I; Polsinelli M
    Yeast; 1994 Aug; 10(8):1101-10. PubMed ID: 7992510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the Viable but Nonculturable (VBNC) State in Saccharomyces cerevisiae.
    Salma M; Rousseaux S; Sequeira-Le Grand A; Divol B; Alexandre H
    PLoS One; 2013; 8(10):e77600. PubMed ID: 24204887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional Analysis of the FZF1 Genes of
    Liu X; Liu X; Zhang Z; Sang M; Sun X; He C; Xin P; Zhang H
    Front Microbiol; 2018; 9():96. PubMed ID: 29467731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae.
    Park H; Hwang YS
    J Microbiol; 2008 Oct; 46(5):542-8. PubMed ID: 18974956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae.
    Sarver A; DeRisi J
    Mol Biol Cell; 2005 Oct; 16(10):4781-91. PubMed ID: 16014606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Las21 participates in extracellular/cell surface phenomena in Saccharomyces cerevisiae.
    Tohe A; Oguchi T
    Genes Genet Syst; 1999 Oct; 74(5):241-56. PubMed ID: 10734606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SKG1, a suppressor gene of synthetic lethality of kex2Deltagas1Delta mutations, encodes a novel membrane protein that affects cell wall composition.
    Tomishige N; Noda Y; Adachi H; Shimoi H; Yoda K
    Yeast; 2005 Jan; 22(2):141-55. PubMed ID: 15645486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae.
    André B; Talibi D; Soussi Boudekou S; Hein C; Vissers S; Coornaert D
    Nucleic Acids Res; 1995 Feb; 23(4):558-64. PubMed ID: 7899075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Schizosaccharomyces pombe stt3+ is a functional homologue of Saccharomyces cerevisiae STT3 which regulates oligosaccharyltransferase activity.
    Yoshida S; Matsuura A; Merregaert J; Anraku Y
    Yeast; 1999 Apr; 15(6):497-505. PubMed ID: 10234787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae.
    Trilla JA; Durán A; Roncero C
    J Cell Biol; 1999 Jun; 145(6):1153-63. PubMed ID: 10366589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression of MET4 Leads to the Upregulation of Stress-Related Genes and Enhanced Sulfite Tolerance in
    Wei Z; Zhang Z; Zhao W; Yin T; Liu X; Zhang H
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203287
    [No Abstract]   [Full Text] [Related]  

  • 34. Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.
    Vivier MA; Lambrechts MG; Pretorius IS
    Crit Rev Biochem Mol Biol; 1997; 32(5):405-35. PubMed ID: 9383611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overproduction of PDR3 suppresses mitochondrial import defects associated with a TOM70 null mutation by increasing the expression of TOM72 in Saccharomyces cerevisiae.
    Koh JY; Hájek P; Bedwell DM
    Mol Cell Biol; 2001 Nov; 21(22):7576-86. PubMed ID: 11604494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium tolerance depends on the capacity to transport potassium in Saccharomyces cerevisiae.
    Gómez MJ; Luyten K; Onuhoa CN; Ramos J
    Folia Microbiol (Praha); 1994; 39(6):519-20. PubMed ID: 8550009
    [No Abstract]   [Full Text] [Related]  

  • 37. The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae.
    Yang Z; Bisson LF
    Yeast; 1996 Nov; 12(14):1407-19. PubMed ID: 8948096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane.
    Navarre C; Goffeau A
    EMBO J; 2000 Jun; 19(11):2515-24. PubMed ID: 10835350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle.
    Li FN; Johnston M
    EMBO J; 1997 Sep; 16(18):5629-38. PubMed ID: 9312022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains.
    Pérez-Ortín JE; Querol A; Puig S; Barrio E
    Genome Res; 2002 Oct; 12(10):1533-9. PubMed ID: 12368245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.