BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9294760)

  • 1. Bending and fracture toughness of woven self-reinforced composite poly(methyl methacrylate).
    Wright DD; Lautenschlager EP; Gilbert JL
    J Biomed Mater Res; 1997 Sep; 36(4):441-53. PubMed ID: 9294760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial properties of self-reinforced composite poly(methyl methacrylate).
    Wright DD; Lautenschlager EP; Gilbert JL
    J Biomed Mater Res; 1998; 43(2):153-61. PubMed ID: 9619433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bending and fracture toughness of woven self-reinforced composite poly (methyl methacrylate).
    Wright DD; Lautenschlager EP; Gilbert JL
    Northwest Dent Res; 1996; 7(1):2-4. PubMed ID: 9487926
    [No Abstract]   [Full Text] [Related]  

  • 5. Pin-on-disc evaluation of self-reinforced composite poly(methyl methacrylate) for total joint replacements.
    Peers WJ; Wright-Charlesworth DD; Miskioglu I
    J Biomed Mater Res B Appl Biomater; 2006 Oct; 79(1):16-24. PubMed ID: 16544304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of processing temperature and time on the structure and fracture characteristics of self-reinforced composite poly(methyl methacrylate).
    Wright DD; Gilbert JL; Lautenschlager EP
    J Mater Sci Mater Med; 1999 Aug; 10(8):503-12. PubMed ID: 15348121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static and fatigue mechanical characterizations of variable diameter fibers reinforced bone cement.
    Zhou Y; Yue W; Li C; Mason JJ
    J Mater Sci Mater Med; 2009 Feb; 20(2):633-41. PubMed ID: 18936882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite.
    Sun W; Cai Q; Li P; Deng X; Wei Y; Xu M; Yang X
    Dent Mater; 2010 Sep; 26(9):873-80. PubMed ID: 20579722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fracture toughness of titanium-cement interfaces: effects of fibers and loading angles.
    Khandaker M; Utsaha KC; Morris T
    Int J Nanomedicine; 2014; 9():1689-97. PubMed ID: 24729704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow intrusion characteristics and fracture properties of titanium-fibre-reinforced bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    Biomaterials; 1998 Sep; 19(17):1569-77. PubMed ID: 9830982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers.
    MeriƧ G; Ruyter IE
    Dent Mater; 2007 Sep; 23(9):1157-63. PubMed ID: 17118440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles.
    Topouzi M; Kontonasaki E; Bikiaris D; Papadopoulou L; Paraskevopoulos KM; Koidis P
    J Mech Behav Biomed Mater; 2017 May; 69():213-222. PubMed ID: 28088693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications.
    Paz E; Forriol F; Del Real JC; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1003-1011. PubMed ID: 28531971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material Mismatch Effect on the Fracture of a Bone-Composite Cement Interface.
    Khandaker M; Tarantini S
    Adv Mater Sci Appl; 2012 Dec; 1(1):1-8. PubMed ID: 24761427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Three-Parameter Weibull Distribution Method to Determine the Fracture Property of PMMA Bone Cement.
    Li L; Cao H; Guan J; He S; Niu L; Liu H
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Porosity on Fracture Toughness and Fracture Behavior of Antibiotic-Loaded PMMA Bone Cement.
    Kim S; Baril C; Rudraraju S; Ploeg HL
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34286825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fracture toughness of Kevlar 29/poly(methyl methacrylate) composite materials for surgical implantations.
    Pourdeyhimi B; Robinson HH; Schwartz P; Wagner HD
    Ann Biomed Eng; 1986; 14(3):277-94. PubMed ID: 3767094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic and ultimate properties of acrylic bone cement reinforced with ultra-high-molecular-weight polyethylene fibers.
    Pourdeyhimi B; Wagner HD
    J Biomed Mater Res; 1989 Jan; 23(1):63-80. PubMed ID: 2708405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.