These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1116 related articles for article (PubMed ID: 9294762)

  • 1. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. I. Raw material evaluation and measurement of fiber-matrix interfacial adhesion.
    Slivka MA; Chu CC; Adisaputro IA
    J Biomed Mater Res; 1997 Sep; 36(4):469-77. PubMed ID: 9294762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. II. A new method using laser scanning confocal microscopy.
    Slivka MA; Chu CC
    J Biomed Mater Res; 1997 Dec; 37(3):353-62. PubMed ID: 9368140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface plasma treatment on the chemical, physical, morphological, and mechanical properties of totally absorbable bone internal fixation devices.
    Ibnabddjalil M; Loh IH; Chu CC; Blumenthal N; Alexander H; Turner D
    J Biomed Mater Res; 1994 Mar; 28(3):289-301. PubMed ID: 8077244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance test of Nano-HA/PLLA composites for interface fixation.
    Zhu W; Huang J; Lu W; Sun Q; Peng L; Fen W; Li H; Ou Y; Liu H; Wang D; Zeng Y
    Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):331-5. PubMed ID: 23957645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-reinforced composites of hydroxyapatite-coated PLLA fibers: fabrication and mechanical characterization.
    Charles LF; Kramer ER; Shaw MT; Olson JR; Wei M
    J Mech Behav Biomed Mater; 2013 Jan; 17():269-77. PubMed ID: 23127637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hydroxyapatite concentration on high-modulus composite for biodegradable bone-fixation devices.
    Heimbach B; Grassie K; Shaw MT; Olson JR; Wei M
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1963-1971. PubMed ID: 27300308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the mechanical performance of bacterial cellulose/poly(L-lactic) acid composites.
    Quero F; Nogi M; Yano H; Abdulsalami K; Holmes SM; Sakakini BH; Eichhorn SJ
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):321-30. PubMed ID: 20356252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of silane treatment on absorbable microfibers.
    Andriano KP; Daniels AU
    J Appl Biomater; 1992; 3(3):191-5. PubMed ID: 10147714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites.
    Yamadi S; Kobayashi S
    J Mater Sci Mater Med; 2009 Jan; 20(1):67-74. PubMed ID: 18704650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyapatite nanorod-reinforced biodegradable poly(L-lactic acid) composites for bone plate applications.
    Aydin E; Planell JA; Hasirci V
    J Mater Sci Mater Med; 2011 Nov; 22(11):2413-27. PubMed ID: 21918894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.
    Chen X; Li Y; Gu N
    Biomed Mater; 2010 Aug; 5(4):044104. PubMed ID: 20683132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro flexural properties of hydroxyapatite and self-reinforced poly(L-lactic acid).
    Wright-Charlesworth DD; King JA; Miller DM; Lim CH
    J Biomed Mater Res A; 2006 Sep; 78(3):541-9. PubMed ID: 16736480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical and biodegradable properties of porous titanium filled with poly-L-lactic acid by modified in situ polymerization technique.
    Nakai M; Niinomi M; Ishii D
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1206-18. PubMed ID: 21783129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable polyesters reinforced with surface-modified vegetable fibers.
    Zini E; Baiardo M; Armelao L; Scandola M
    Macromol Biosci; 2004 Mar; 4(3):286-95. PubMed ID: 15468219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid-carbon nanotube composites using atomic force microscopy.
    Iqbal Q; Bernstein P; Zhu Y; Rahamim J; Cebe P; Staii C
    Nanotechnology; 2015 Mar; 26(10):105702. PubMed ID: 25683087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional polyhedral oligomeric silsesquioxane reinforced poly(lactic acid) nanocomposites for biomedical applications.
    Huang L; Tan J; Li W; Zhou L; Liu Z; Luo B; Lu L; Zhou C
    J Mech Behav Biomed Mater; 2019 Feb; 90():604-614. PubMed ID: 30500698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing, annealing and sterilisation of poly-L-lactide.
    Weir NA; Buchanan FJ; Orr JF; Farrar DF; Boyd A
    Biomaterials; 2004 Aug; 25(18):3939-49. PubMed ID: 15046884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study.
    Törmälä P; Vasenius J; Vainionpää S; Laiho J; Pohjonen T; Rokkanen P
    J Biomed Mater Res; 1991 Jan; 25(1):1-22. PubMed ID: 1850429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing.
    Fan Y; Xiu K; Duan H; Zhang M
    Clin Biomech (Bristol); 2008; 23 Suppl 1():S7-S16. PubMed ID: 18291564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.