These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9294794)

  • 21. Osmolarity influences chondrocyte death in wounded articular cartilage.
    Amin AK; Huntley JS; Bush PG; Simpson AH; Hall AC
    J Bone Joint Surg Am; 2008 Jul; 90(7):1531-42. PubMed ID: 18594103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collagen biosynthesis of mechanically loaded articular cartilage explants.
    Ackermann B; Steinmeyer J
    Osteoarthritis Cartilage; 2005 Oct; 13(10):906-14. PubMed ID: 16129631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical behaviour of articular cartilage under tensile cyclic load.
    Bellucci G; Seedhom BB
    Rheumatology (Oxford); 2001 Dec; 40(12):1337-45. PubMed ID: 11752502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of static compression on proteoglycan biosynthesis by chondrocytes transplanted to articular cartilage in vitro.
    Chen AC; Sah RL
    J Orthop Res; 1998 Sep; 16(5):542-50. PubMed ID: 9820276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of tissue maturity on cell viability in load-injured articular cartilage explants.
    Levin AS; Chen CT; Torzilli PA
    Osteoarthritis Cartilage; 2005 Jun; 13(6):488-96. PubMed ID: 15922183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous cyclic load reduces proteoglycan release from articular cartilage.
    Torzilli PA; Grigiene R
    Osteoarthritis Cartilage; 1998 Jul; 6(4):260-8. PubMed ID: 9876395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A method of quantitative autoradiography for the spatial localization of proteoglycan synthesis rates in cartilage.
    Buschmann MD; Maurer AM; Berger E; Hunziker EB
    J Histochem Cytochem; 1996 May; 44(5):423-31. PubMed ID: 8627000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of continuously applied cyclic mechanical loading on the fibronectin metabolism of articular cartilage explants.
    Steinmeyer J; Ackermann B
    Res Exp Med (Berl); 1999 Mar; 198(5):247-60. PubMed ID: 10209760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Damage to rabbit femoral articular cartilage following direct impacts of uniform stresses: an in vitro study.
    Zhang H; Vrahas MS; Baratta RV; Rosler DM
    Clin Biomech (Bristol, Avon); 1999 Oct; 14(8):543-8. PubMed ID: 10521639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrastructural analysis of the adaptation of articular cartilage to mechanical stimulation.
    Greco F; Specchia N; Falciglia F; Toesca A; Nori S
    Ital J Orthop Traumatol; 1992; 18(3):311-21. PubMed ID: 1308876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shock absorbing ability of articular cartilage and subchondral bone under impact compression.
    Malekipour F; Whitton C; Oetomo D; Lee PV
    J Mech Behav Biomed Mater; 2013 Oct; 26():127-35. PubMed ID: 23746699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Articular cartilage collagen and proteoglycans. Their functional interdependency.
    Broom ND; Poole CA
    Arthritis Rheum; 1983 Sep; 26(9):1111-9. PubMed ID: 6684430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of an in vitro single-impact load model of the initiation of osteoarthritis-like changes in articular cartilage.
    Huser CA; Davies ME
    J Orthop Res; 2006 Apr; 24(4):725-32. PubMed ID: 16514652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact-induced osteochondral fracture in the tibial plateau.
    Thambyah A; Shim VP; Chong LM; Lee VS
    J Biomech; 2008; 41(6):1236-42. PubMed ID: 18394630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone.
    Burgin LV; Aspden RM
    J Mater Sci Mater Med; 2008 Feb; 19(2):703-11. PubMed ID: 17619965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-step repair for cartilage defects in a rabbit model: a technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture.
    Dai L; He Z; Zhang X; Hu X; Yuan L; Qiang M; Zhu J; Shao Z; Zhou C; Ao Y
    Am J Sports Med; 2014 Mar; 42(3):583-91. PubMed ID: 24496505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The proteoglycan metabolism, morphology and viability of articular cartilage treated with a synthetic matrix metalloproteinase inhibitor.
    Steinmeyer J; Daufeldt S; Kalbhen DA
    Res Exp Med (Berl); 1997; 197(2):63-79. PubMed ID: 9380952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Short-term changes in cell and matrix damage following mechanical injury of articular cartilage explants and modelling of microphysical mediators.
    Morel V; Quinn TM
    Biorheology; 2004; 41(3-4):509-19. PubMed ID: 15299282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intermittent mechanical loading of articular cartilage explants modulates chondroitin sulfate fine structure.
    Sauerland K; Steinmeyer J
    Osteoarthritis Cartilage; 2007 Dec; 15(12):1403-9. PubMed ID: 17574451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of early degenerative changes on the vulnerability of articular cartilage to impact-induced injury.
    Workman J; Thambyah A; Broom N
    Clin Biomech (Bristol, Avon); 2017 Mar; 43():40-49. PubMed ID: 28199881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.