BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9295362)

  • 21. Cyclin proteolysis as a retinoid cancer prevention mechanism.
    Dragnev KH; Freemantle SJ; Spinella MJ; Dmitrovsky E
    Ann N Y Acad Sci; 2001 Dec; 952():13-22. PubMed ID: 11795432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit.
    Satoh K; Sasajima H; Nyoumura KI; Yokosawa H; Sawada H
    Biochemistry; 2001 Jan; 40(2):314-9. PubMed ID: 11148024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleotidase activities of the 26 S proteasome and its regulatory complex.
    Hoffman L; Rechsteiner M
    J Biol Chem; 1996 Dec; 271(51):32538-45. PubMed ID: 8955078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of in vivo proteasome activity in a starfish oocyte using membrane-impermeant substrate.
    Chiba K; Sato E; Hoshi M
    J Biochem; 1997 Aug; 122(2):286-93. PubMed ID: 9378704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53.
    Zhang Z; Wang H; Li M; Agrawal S; Chen X; Zhang R
    J Biol Chem; 2004 Apr; 279(16):16000-6. PubMed ID: 14761977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of G1 arrest and apoptosis in human jurkat T cells by pentagalloylglucose through inhibiting proteasome activity and elevating p27Kip1, p21Cip1/WAF1, and Bax proteins.
    Chen WJ; Lin JK
    J Biol Chem; 2004 Apr; 279(14):13496-505. PubMed ID: 14726525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21.
    Cayrol C; Ducommun B
    Oncogene; 1998 Nov; 17(19):2437-44. PubMed ID: 9824154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SIAH-1 interacts with CtIP and promotes its degradation by the proteasome pathway.
    Germani A; Prabel A; Mourah S; Podgorniak MP; Di Carlo A; Ehrlich R; Gisselbrecht S; Varin-Blank N; Calvo F; Bruzzoni-Giovanelli H
    Oncogene; 2003 Dec; 22(55):8845-51. PubMed ID: 14654780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibiting proteasome activity causes overreplication of DNA and blocks entry into mitosis in sea urchin embryos.
    Kawahara H; Philipova R; Yokosawa H; Patel R; Tanaka K; Whitaker M
    J Cell Sci; 2000 Aug; 113 ( Pt 15)():2659-70. PubMed ID: 10893181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome.
    Dawson S; Apcher S; Mee M; Higashitsuji H; Baker R; Uhle S; Dubiel W; Fujita J; Mayer RJ
    J Biol Chem; 2002 Mar; 277(13):10893-902. PubMed ID: 11779854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. To be or not to be ubiquitinated?
    Bloom J; Pagano M
    Cell Cycle; 2004 Feb; 3(2):138-40. PubMed ID: 14712075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors.
    Chen F; Chang D; Goh M; Klibanov SA; Ljungman M
    Cell Growth Differ; 2000 May; 11(5):239-46. PubMed ID: 10845424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The spike of S phase cyclin Cig2 expression at the G1-S border in fission yeast requires both APC and SCF ubiquitin ligases.
    Yamano H; Kitamura K; Kominami K; Lehmann A; Katayama S; Hunt T; Toda T
    Mol Cell; 2000 Dec; 6(6):1377-87. PubMed ID: 11163211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction between cyclin T1 and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome.
    Kiernan RE; Emiliani S; Nakayama K; Castro A; Labbé JC; Lorca T; Nakayama Ki K; Benkirane M
    Mol Cell Biol; 2001 Dec; 21(23):7956-70. PubMed ID: 11689688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of the G1 phase of the cell cycle by periodic stabilization and degradation of the p25rum1 CDK inhibitor.
    Benito J; Martín-Castellanos C; Moreno S
    EMBO J; 1998 Jan; 17(2):482-97. PubMed ID: 9430640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ubiquitin-proteasome pathway of intracellular proteolysis.
    Doherty FJ; Dawson S; Mayer RJ
    Essays Biochem; 2002; 38():51-63. PubMed ID: 12463161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for the participation of the proteasome and calpain in early phases of muscle cell differentiation.
    Ueda Y; Wang MC; Ou BR; Huang J; Elce J; Tanaka K; Ichihara A; Forsberg NE
    Int J Biochem Cell Biol; 1998 Jun; 30(6):679-94. PubMed ID: 9695025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissecting various ATP-dependent steps involved in proteasomal degradation.
    Ogura T; Tanaka K
    Mol Cell; 2003 Jan; 11(1):3-5. PubMed ID: 12535513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Demonstration that a human 26S proteolytic complex consists of a proteasome and multiple associated protein components and hydrolyzes ATP and ubiquitin-ligated proteins by closely linked mechanisms.
    Kanayama HO; Tamura T; Ugai S; Kagawa S; Tanahashi N; Yoshimura T; Tanaka K; Ichihara A
    Eur J Biochem; 1992 Jun; 206(2):567-78. PubMed ID: 1317798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glucose-regulated stresses cause degradation of DNA topoisomerase IIalpha by inducing nuclear proteasome during G1 cell cycle arrest in cancer cells.
    Kim HD; Tomida A; Ogiso Y; Tsuruo T
    J Cell Physiol; 1999 Jul; 180(1):97-104. PubMed ID: 10362022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.