These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 9295965)

  • 41. Expression and processing of vertebrate acetylcholinesterase in the yeast Pichia pastoris.
    Morel N; Massoulié J
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):121-9. PubMed ID: 9359842
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation and cloning of a metalloproteinase from king cobra snake venom.
    Guo XX; Zeng L; Lee WH; Zhang Y; Jin Y
    Toxicon; 2007 Jun; 49(7):954-65. PubMed ID: 17337026
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neuromuscular action of venom from the South American colubrid snake Philodryas patagoniensis.
    Carreiro da Costa RS; Prudêncio L; Ferrari EF; Souza GH; de Mello SM; Prianti Júnior AC; Ribeiro W; Zamunér SR; Hyslop S; Cogo JC
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jul; 148(1):31-8. PubMed ID: 18455482
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Natural inhibitors of snake venom hemorrhagic metalloproteinases.
    Perales J; Neves-Ferreira AG; Valente RH; Domont GB
    Toxicon; 2005 Jun; 45(8):1013-20. PubMed ID: 15922772
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Snake venom fibrin(ogen)olytic enzymes.
    Swenson S; Markland FS
    Toxicon; 2005 Jun; 45(8):1021-39. PubMed ID: 15882884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High aryl acylamidase activity associated with cobra venom acetylcholinesterase: biological significance.
    Rajesh RV; Layer PG; Boopathy R
    Biochimie; 2009; 91(11-12):1450-6. PubMed ID: 19695303
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of serotonin-sensitive aryl acylamidase activity with cobra venom acetylcholinesterase.
    Rajesh RV; Balasubramanian AS; Boopathy R
    Indian J Biochem Biophys; 2003 Apr; 40(2):92-7. PubMed ID: 22900296
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular characterization of L-amino acid oxidase from king cobra venom.
    Jin Y; Lee WH; Zeng L; Zhang Y
    Toxicon; 2007 Sep; 50(4):479-89. PubMed ID: 17543361
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations.
    Alape-Girón A; Sanz L; Escolano J; Flores-Díaz M; Madrigal M; Sasa M; Calvete JJ
    J Proteome Res; 2008 Aug; 7(8):3556-71. PubMed ID: 18557640
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cloning and characterisation of natriuretic peptides from the venom glands of Australian elapids.
    St Pierre L; Flight S; Masci PP; Hanchard KJ; Lewis RJ; Alewood PF; de Jersey J; Lavin MF
    Biochimie; 2006 Dec; 88(12):1923-31. PubMed ID: 16908092
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genus specific neutralization of Bungarus snake venoms by Thai Red Cross banded krait antivenom.
    Chanhome L; Wongtongkam N; Khow O; Pakmanee N; Omori-Satoh T; Sitprija V
    J Nat Toxins; 1999 Feb; 8(1):135-40. PubMed ID: 10091133
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cloning of cDNAs encoding C-type lectins from Elapidae snakes Bungarus fasciatus and Bungarus multicinctus.
    Zha HG; Lee WH; Zhang Y
    Toxicon; 2001 Dec; 39(12):1887-92. PubMed ID: 11600152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fasciculin inhibition of acetylcholinesterase is prevented by chemical modification of the enzyme at a peripheral site.
    Durán R; Cerveñansky C; Dajas F; Tipton KF
    Biochim Biophys Acta; 1994 Dec; 1201(3):381-8. PubMed ID: 7803468
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrooptical measurements demonstrate a large permanent dipole moment associated with acetylcholinesterase.
    Porschke D; Créminon C; Cousin X; Bon C; Sussman J; Silman I
    Biophys J; 1996 Apr; 70(4):1603-8. PubMed ID: 8785319
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The pharmacological role of phosphatases (acid and alkaline phosphomonoesterases) in snake venoms related to release of purines - a multitoxin.
    Dhananjaya BL; D'Souza CJ
    Basic Clin Pharmacol Toxicol; 2011 Feb; 108(2):79-83. PubMed ID: 21156030
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for presence of Zn+2-binding site in acetylcholinesterase.
    Rajesh RV; Balasubramanian AS; Boopathy R
    Biochimie; 2009 Apr; 91(4):526-32. PubMed ID: 19340922
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production of an immunoenzymatic tracer combining a scFv and the acetylcholinesterase of Bungarus fasciatus by genetic recombination.
    Choumet V; Cousin X; Bon C
    FEBS Lett; 1999 Jul; 455(1-2):18-22. PubMed ID: 10428463
    [TBL] [Abstract][Full Text] [Related]  

  • 58. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms.
    Duval N; Massoulié J; Bon S
    J Cell Biol; 1992 Aug; 118(3):641-53. PubMed ID: 1639848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Triacontyl p-coumarate: an inhibitor of snake venom metalloproteinases.
    Mendes MM; Vieira SA; Gomes MS; Paula VF; Alcântara TM; Homsi-Brandeburgo MI; dos Santos JI; Magro AJ; Fontes MR; Rodrigues VM
    Phytochemistry; 2013 Feb; 86():72-82. PubMed ID: 23141056
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two subtypes of acetylcholinesterase isoenzymes distinguishable by Angusticeps-type toxin F7.
    Lee CY; Lin WW
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 92(2):279-81. PubMed ID: 2565185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.