These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9296447)

  • 1. The pH dependence of lipid peroxidation using water-soluble azo initiators.
    Hanlon MC; Seybert DW
    Free Radic Biol Med; 1997; 23(5):712-9. PubMed ID: 9296447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of unsymmetrical azo initiators to increase radical generation efficiency in low-density lipoproteins.
    Culbertson SM; Porter NA
    Free Radic Res; 2000 Dec; 33(6):705-18. PubMed ID: 11237093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2,2'-Azobis (4-methoxy-2,4-dimethylvaleronitrile), a new lipid-soluble azo initiator: application to oxidations of lipids and low-density lipoprotein in solution and in aqueous dispersions.
    Noguchi N; Yamashita H; Gotoh N; Yamamoto Y; Numano R; Niki E
    Free Radic Biol Med; 1998 Jan; 24(2):259-68. PubMed ID: 9433901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of haemoglobin and membrane constituents modification to human erythrocyte damage promoted by peroxyl radicals of different charge and hydrophobicity.
    Celedón G; Rodriguez I; España J; Escobar J; Lissi E
    Free Radic Res; 2001 Jan; 34(1):17-31. PubMed ID: 11234993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic studies on stilbazulenyl-bis-nitrone (STAZN), a nonphenolic chain-breaking antioxidant in solution, micelles, and lipid membranes.
    Mojumdar SC; Becker DA; DiLabio GA; Ley JJ; Barclay LR; Ingold KU
    J Org Chem; 2004 Apr; 69(9):2929-36. PubMed ID: 15104428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiation of lipid autoxidation by ABAP at pH 4-10 in SDS micelles.
    Musialik M; Kita M; Litwinienko G
    Org Biomol Chem; 2008 Feb; 6(4):677-81. PubMed ID: 18264567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of free radical-induced hemolysis of human erythrocytes. II. Hemolysis by lipid-soluble radical initiator.
    Sato Y; Kanazawa S; Sato K; Suzuki Y
    Biol Pharm Bull; 1998 Mar; 21(3):250-6. PubMed ID: 9556155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-initiated peroxidation of lipids in micelles by azaaromatics.
    Barclay LR; Crowe E; Edwards CD
    Lipids; 1997 Mar; 32(3):237-45. PubMed ID: 9076660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the kinetics of low-density lipoprotein oxidation initiated by copper or by azobis (2-amidinopropane).
    Thomas MJ; Chen Q; Franklin C; Rudel LL
    Free Radic Biol Med; 1997; 23(6):927-35. PubMed ID: 9378372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Searching for an absolute kinetic scale of antioxidant activity against lipid peroxidation.
    Sicari M; Stevanato R; Ongaro I; Zuliani R; Ravagnan G; Lucchini V
    Food Chem; 2018 Jan; 239():964-974. PubMed ID: 28873659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant activity of a novel vitamin E derivative, 2-(alpha-D glucopyranosyl)methyl-2,5,7,8-tetramethylchroman-6-ol.
    Murase H; Moon JH; Yamauchi R; Kato K; Kunieda T; Yoshikawa T; Terao J
    Free Radic Biol Med; 1998 Jan; 24(2):217-25. PubMed ID: 9433895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of methyl linoleate in aqueous dispersions induced by copper and iron.
    Yoshida Y; Niki E
    Arch Biochem Biophys; 1992 May; 295(1):107-14. PubMed ID: 1575505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimizing tocopherol-mediated radical phase transfer in low-density lipoprotein oxidation with an amphiphilic unsymmetrical azo initiator.
    Culbertson SM; Vinqvist MR; Barclay LR; Porter NA
    J Am Chem Soc; 2001 Sep; 123(37):8951-60. PubMed ID: 11552801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of water-soluble radical initiator, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, to a study of oxidative stress.
    Yoshida Y; Itoh N; Saito Y; Hayakawa M; Niki E
    Free Radic Res; 2004 Apr; 38(4):375-84. PubMed ID: 15190934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane peroxidation: inhibiting effects of water-soluble antioxidants on phospholipids of different charge types.
    Barclay LR; Vinqvist MR
    Free Radic Biol Med; 1994 Jun; 16(6):779-88. PubMed ID: 8070681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic antioxidant effect of catechin and malvidin 3-glucoside on free radical-initiated peroxidation of linoleic acid in micelles.
    Rossetto M; Vanzani P; Mattivi F; Lunelli M; Scarpa M; Rigo A
    Arch Biochem Biophys; 2002 Dec; 408(2):239-45. PubMed ID: 12464277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidative effects of flavonols and their glycosides against the free-radical-induced peroxidation of linoleic acid in solution and in micelles.
    Zhou B; Miao Q; Yang L; Liu ZL
    Chemistry; 2005 Jan; 11(2):680-91. PubMed ID: 15578643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles.
    Fang JG; Lu M; Chen ZH; Zhu HH; Li Y; Yang L; Wu LM; Liu ZL
    Chemistry; 2002 Sep; 8(18):4191-8. PubMed ID: 12298009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidative effects of curcumin and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles.
    Dai F; Chen WF; Zhou B; Yang L; Liu ZL
    Phytother Res; 2009 Sep; 23(9):1220-8. PubMed ID: 19173279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of lower oxidizability of eicosapentaenoate than linoleate in aqueous micelles. II. Effect of antioxidants.
    Yazu K; Yamamoto Y; Niki E; Miki K; Ukegawa K
    Lipids; 1998 Jun; 33(6):597-600. PubMed ID: 9655375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.