BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 9296500)

  • 1. Molecular mechanics of calcium-myristoyl switches.
    Ames JB; Ishima R; Tanaka T; Gordon JI; Stryer L; Ikura M
    Nature; 1997 Sep; 389(6647):198-202. PubMed ID: 9296500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core mutations that promote the calcium-induced allosteric transition of bovine recoverin.
    Baldwin AN; Ames JB
    Biochemistry; 1998 Dec; 37(50):17408-19. PubMed ID: 9860856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state.
    Ames JB; Hamasaki N; Molchanova T
    Biochemistry; 2002 May; 41(18):5776-87. PubMed ID: 11980481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear magnetic resonance evidence for Ca(2+)-induced extrusion of the myristoyl group of recoverin.
    Ames JB; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Dec; 270(52):30909-13. PubMed ID: 8537345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-dependent solvation of the myristoyl group of recoverin.
    Hughes RE; Brzovic PS; Klevit RE; Hurley JB
    Biochemistry; 1995 Sep; 34(36):11410-6. PubMed ID: 7547868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers.
    Valentine KG; Mesleh MF; Opella SJ; Ikura M; Ames JB
    Biochemistry; 2003 Jun; 42(21):6333-40. PubMed ID: 12767213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Biochemistry; 1994 Sep; 33(35):10743-53. PubMed ID: 8075075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional restoration of the Ca2+-myristoyl switch in a recoverin mutant.
    Senin II; Vaganova SA; Weiergräber OH; Ergorov NS; Philippov PP; Koch KW
    J Mol Biol; 2003 Jul; 330(2):409-18. PubMed ID: 12823978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-dependent binding of recoverin to membranes monitored by surface plasmon resonance spectroscopy in real time.
    Lange C; Koch KW
    Biochemistry; 1997 Oct; 36(40):12019-26. PubMed ID: 9315839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-myristoyl protein switch.
    Zozulya S; Stryer L
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11569-73. PubMed ID: 1454850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy.
    Desmeules P; Grandbois M; Bondarenko VA; Yamazaki A; Salesse C
    Biophys J; 2002 Jun; 82(6):3343-50. PubMed ID: 12023256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies.
    Ozawa T; Fukuda M; Nara M; Nakamura A; Komine Y; Kohama K; Umezawa Y
    Biochemistry; 2000 Nov; 39(47):14495-503. PubMed ID: 11087403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring calcium-induced conformational changes in recoverin by electrospray mass spectrometry.
    Neubert TA; Walsh KA; Hurley JB; Johnson RS
    Protein Sci; 1997 Apr; 6(4):843-50. PubMed ID: 9098894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Single amino acid substitutions in the Ca2+-binding site of recoverin.II.The unusual behavior of the protein upon the binding of calcium ions].
    Uverskiĭ VN; Permiakov SE; Senin II; Cherskaia AM; Shul'ga-Morskoĭ SV; Zinchenko DV; Alekseev AM; Zargarov AA; Lipkin VM; Filippov PP; Permiakov EA
    Bioorg Khim; 2000 Mar; 26(3):173-8. PubMed ID: 10816814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of rhodopsin phosphorylation by non-myristoylated recombinant recoverin.
    Kawamura S; Cox JA; Nef P
    Biochem Biophys Res Commun; 1994 Aug; 203(1):121-7. PubMed ID: 8074645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance.
    Hamasaki-Katagiri N; Molchanova T; Takeda K; Ames JB
    J Biol Chem; 2004 Mar; 279(13):12744-54. PubMed ID: 14722091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation of the myristoylated and nonmyristoylated form of recombinant recoverin in E. coli cells and comparison of their functional activity].
    Zargarov AA; Senin II; Alekseev AM; Shul'ga-Morskoĭ SV; Filippov PP; Lipkin VM
    Bioorg Khim; 1996 Jul; 22(7):483-8. PubMed ID: 8992953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Point amino acid substitutions in Ca2+-binding centers of recoverin. III. Mutant with the fourth reconstructed Ca2+-binding site].
    Permiakov SE; Uverskiĭ VN; Cherskaia AM; Shul'ga-Morskoĭ SV; Zinchenko DV; Alekseev AM; Zerniĭ EIu; Zargarov AA; Senin II; Lipkin VM; Filippov PP; Permiakov EA
    Bioorg Khim; 2000 Apr; 26(4):285-9. PubMed ID: 10857020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.