These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 9296605)
1. Structure and function of the conserved domain in alphaA-crystallin. Site-directed spin labeling identifies a beta-strand located near a subunit interface. Berengian AR; Bova MP; Mchaourab HS Biochemistry; 1997 Aug; 36(33):9951-7. PubMed ID: 9296605 [TBL] [Abstract][Full Text] [Related]
2. Site-directed spin-labeling study of the structure and subunit interactions along a conserved sequence in the alpha-crystallin domain of heat-shock protein 27. Evidence of a conserved subunit interface. Mchaourab HS; Berengian AR; Koteiche HA Biochemistry; 1997 Dec; 36(48):14627-34. PubMed ID: 9398181 [TBL] [Abstract][Full Text] [Related]
3. Folding pattern of the alpha-crystallin domain in alphaA-crystallin determined by site-directed spin labeling. Koteiche HA; Mchaourab HS J Mol Biol; 1999 Nov; 294(2):561-77. PubMed ID: 10610780 [TBL] [Abstract][Full Text] [Related]
4. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. Pasta SY; Raman B; Ramakrishna T; Rao ChM Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619 [TBL] [Abstract][Full Text] [Related]
5. Identification of protein folding patterns using site-directed spin labeling. Structural characterization of a beta-sheet and putative substrate binding regions in the conserved domain of alpha A-crystallin. Koteiche HA; Berengian AR; Mchaourab HS Biochemistry; 1998 Sep; 37(37):12681-8. PubMed ID: 9737844 [TBL] [Abstract][Full Text] [Related]
6. Site-directed spin labeling study of subunit interactions in the alpha-crystallin domain of small heat-shock proteins. Comparison of the oligomer symmetry in alphaA-crystallin, HSP 27, and HSP 16.3. Berengian AR; Parfenova M; Mchaourab HS J Biol Chem; 1999 Mar; 274(10):6305-14. PubMed ID: 10037719 [TBL] [Abstract][Full Text] [Related]
7. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry. Peterson JJ; Young MM; Takemoto LJ Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221 [TBL] [Abstract][Full Text] [Related]
8. The role of the conserved COOH-terminal triad in alphaA-crystallin aggregation and functionality. Li Y; Schmitz KR; Salerno JC; Koretz JF Mol Vis; 2007 Sep; 13():1758-68. PubMed ID: 17960114 [TBL] [Abstract][Full Text] [Related]
9. Maintenance of chaperone-like activity despite mutations in a conserved region of murine lens alphaB crystallin. Hepburne-Scott HW; Crabbe MJ Mol Vis; 1999 Aug; 5():15. PubMed ID: 10445957 [TBL] [Abstract][Full Text] [Related]
10. Wrapping the alpha-crystallin domain fold in a chaperone assembly. Stamler R; Kappé G; Boelens W; Slingsby C J Mol Biol; 2005 Oct; 353(1):68-79. PubMed ID: 16165157 [TBL] [Abstract][Full Text] [Related]
11. Structural and functional roles for beta-strand 7 in the alpha-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana. Sun Y; Bojikova-Fournier S; MacRae TH FEBS J; 2006 Mar; 273(5):1020-34. PubMed ID: 16478475 [TBL] [Abstract][Full Text] [Related]
12. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region. Kundu M; Sen PC; Das KP Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631 [TBL] [Abstract][Full Text] [Related]
13. Influence of the C-terminal residues on oligomerization of alpha A-crystallin. Thampi P; Abraham EC Biochemistry; 2003 Oct; 42(40):11857-63. PubMed ID: 14529298 [TBL] [Abstract][Full Text] [Related]
14. Cleavage of the C-terminal serine of human alphaA-crystallin produces alphaA1-172 with increased chaperone activity and oligomeric size. Aziz A; Santhoshkumar P; Sharma KK; Abraham EC Biochemistry; 2007 Mar; 46(9):2510-9. PubMed ID: 17279772 [TBL] [Abstract][Full Text] [Related]
15. Characterization, cloning, and expression of porcine alpha B crystallin. Liao JH; Hung CC; Lee JS; Wu SH; Chiou SH Biochem Biophys Res Commun; 1998 Mar; 244(1):131-7. PubMed ID: 9514893 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of an inactive duck delta II crystallin mutant with bound argininosuccinate. Vallée F; Turner MA; Lindley PL; Howell PL Biochemistry; 1999 Feb; 38(8):2425-34. PubMed ID: 10029536 [TBL] [Abstract][Full Text] [Related]
17. Arginine hydrochloride enhances the dynamics of subunit assembly and the chaperone-like activity of alpha-crystallin. Srinivas V; Raman B; Rao KS; Ramakrishna T; Rao ChM Mol Vis; 2005 Apr; 11():249-55. PubMed ID: 15827547 [TBL] [Abstract][Full Text] [Related]
18. Role of arginine-163 and the 163REEK166 motif in the oligomerization of truncated alpha A-crystallins. Rajan S; Chandrashekar R; Aziz A; Abraham EC Biochemistry; 2006 Dec; 45(51):15684-91. PubMed ID: 17176090 [TBL] [Abstract][Full Text] [Related]
19. Significance of alpha-crystallin heteropolymer with a 3:1 alphaA/alphaB ratio: chaperone-like activity, structure and hydrophobicity. Srinivas PN; Reddy PY; Reddy GB Biochem J; 2008 Sep; 414(3):453-60. PubMed ID: 18479247 [TBL] [Abstract][Full Text] [Related]
20. Structure of the substrate binding pocket of the multidrug transporter EmrE: site-directed spin labeling of transmembrane segment 1. Koteiche HA; Reeves MD; McHaourab HS Biochemistry; 2003 May; 42(20):6099-105. PubMed ID: 12755611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]