BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 9297850)

  • 1. Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes.
    Holopainen JM; Lehtonen JY; Kinnunen PK
    Chem Phys Lipids; 1997 Aug; 88(1):1-13. PubMed ID: 9297850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM; Subramanian M; Kinnunen PK
    Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids.
    Lehtonen JY; Holopainen JM; Kinnunen PK
    Biophys J; 1996 Apr; 70(4):1753-60. PubMed ID: 8785334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimyristoylphosphatidylcholine/C16:0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle x-ray scattering.
    Holopainen JM; Lemmich J; Richter F; Mouritsen OG; Rapp G; Kinnunen PK
    Biophys J; 2000 May; 78(5):2459-69. PubMed ID: 10777742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the main transition of dinervonoylphosphocholine liposomes by fluorescence spectroscopy.
    Metso AJ; Mattila JP; Kinnunen PK
    Biochim Biophys Acta; 2004 May; 1663(1-2):222-31. PubMed ID: 15157624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1995 Feb; 68(2):525-35. PubMed ID: 7696506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlamellar coupling of phospholipid bilayers in liposomes: an emergent property of lipid rearrangement.
    Parry MJ; Hagen M; Mouritsen OG; Kinnunen PK; Alakoskela JM
    Langmuir; 2010 Apr; 26(7):4909-15. PubMed ID: 20180577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for phospholipid microdomain formation in liquid crystalline liposomes reconstituted with Escherichia coli lactose permease.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1997 Mar; 72(3):1247-57. PubMed ID: 9138570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ceramide-1-phosphate, in contrast to ceramide, is not segregated into lateral lipid domains in phosphatidylcholine bilayers.
    Morrow MR; Helle A; Perry J; Vattulainen I; Wiedmer SK; Holopainen JM
    Biophys J; 2009 Mar; 96(6):2216-26. PubMed ID: 19289048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant activity of probucol and its effects on phase transitions in phosphatidylcholine liposomes.
    McLean LR; Hagaman KA
    Biochim Biophys Acta; 1990 Nov; 1029(1):161-6. PubMed ID: 2223806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of adriamycin to liposomes as a probe for membrane lateral organization.
    Söderlund T; Jutila A; Kinnunen PK
    Biophys J; 1999 Feb; 76(2):896-907. PubMed ID: 9929491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of leucinyl-phenylalanyl-valine on DMPC liposome membrane.
    Shobini J; Mishra AK
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Oct; 56A(11):2239-48. PubMed ID: 11058069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the lack of a specific interaction between cholesterol and sphingomyelin.
    Holopainen JM; Metso AJ; Mattila JP; Jutila A; Kinnunen PK
    Biophys J; 2004 Mar; 86(3):1510-20. PubMed ID: 14990478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of the main phase transition of dinervonoylphosphocholine giant liposomes by fluorescence microscopy.
    Metso AJ; Zhao H; Tuunainen I; Kinnunen PK
    Biochim Biophys Acta; 2005 Jul; 1713(2):83-91. PubMed ID: 15979562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential scanning calorimetry study on the binding of nucleic acids to dimyristoylphosphatidylcholine-sphingosine liposomes.
    Kõiv A; Mustonen P; Kinnunen PK
    Chem Phys Lipids; 1994 Mar; 70(1):1-10. PubMed ID: 7516824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies.
    Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN
    Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of aqueous phase aggregation of FTY720 (fingolimod hydrochloride) and its effect on DMPC liposomes using fluorescent molecular probes.
    Swain J; Mohapatra M; Borkar SR; Aidhen IS; Mishra AK
    Phys Chem Chem Phys; 2013 Nov; 15(41):17962-70. PubMed ID: 24048224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J; Bagatolli LA; Goñi FM; Alonso A
    Biophys J; 2006 Feb; 90(3):903-14. PubMed ID: 16284266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of cytochrome c from liposomes by histone H1. Comparison with basic peptides.
    Rytömaa M; Kinnunen PK
    Biochemistry; 1996 Apr; 35(14):4529-39. PubMed ID: 8605203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.