BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9297852)

  • 1. Formation of high-axial-ratio-microstructures from natural and synthetic sphingolipids.
    Goldstein AS; Lukyanov AN; Carlson PA; Yager P; Gelb MH
    Chem Phys Lipids; 1997 Aug; 88(1):21-36. PubMed ID: 9297852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilayer nanotubes and helical ribbons formed by hydrated galactosylceramides: acyl chain and headgroup effects.
    Kulkarni VS; Anderson WH; Brown RE
    Biophys J; 1995 Nov; 69(5):1976-86. PubMed ID: 8580341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of nanotube formation by structural modifications of sphingolipids.
    Kulkarni VS; Boggs JM; Brown RE
    Biophys J; 1999 Jul; 77(1):319-30. PubMed ID: 10388760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymorphic phases of galactocerebrosides: spectroscopic evidence of lamellar crystalline structures.
    Bou Khalil M; Carrier D; Wong PT; Tanphaichitr N
    Biochim Biophys Acta; 2001 Jun; 1512(2):158-70. PubMed ID: 11406093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermotropic behavior of galactosylceramides with cis-monoenoic fatty acyl chains.
    Kulkarni VS; Brown RE
    Biochim Biophys Acta; 1998 Jul; 1372(2):347-58. PubMed ID: 9675335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of brefeldin A on galactosphingolipid synthesis in an immortalized Schwann cell line: evidence for different intracellular locations of galactosylceramide sulfotransferase and ceramide galactosyltransferase activities.
    Farrer RG; Warden MP; Quarles RH
    J Neurochem; 1995 Oct; 65(4):1865-73. PubMed ID: 7561886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive hypoxia inhibits the de novo synthesis of galactosylceramide in cultured oligodendrocytes.
    Kendler A; Dawson G
    J Biol Chem; 1990 Jul; 265(21):12259-66. PubMed ID: 2115515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acyl chain length effects related to glycosphingolipid crypticity in phospholipid membranes: probed by 2H-NMR.
    Hamilton KS; Briere K; Jarrell HC; Grant CW
    Biochim Biophys Acta; 1994 Mar; 1190(2):367-75. PubMed ID: 8142438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosphingolipid acyl chain order profiles: substituent effects.
    Morrow MR; Singh D; Grant CW
    Biochim Biophys Acta; 1995 May; 1235(2):239-48. PubMed ID: 7756331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of non-hydroxy-galactosylceramides and galactosyldiglycerides by hydroxy-ceramide galactosyltransferase.
    van der Bijl P; Strous GJ; Lopes-Cardozo M; Thomas-Oates J; van Meer G
    Biochem J; 1996 Jul; 317 ( Pt 2)(Pt 2):589-97. PubMed ID: 8713090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topology of sphingolipid galactosyltransferases in ER and Golgi: transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis.
    Burger KN; van der Bijl P; van Meer G
    J Cell Biol; 1996 Apr; 133(1):15-28. PubMed ID: 8601603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosphingolipid fatty acid arrangement in phospholipid bilayers: cholesterol effects.
    Morrow MR; Singh D; Lu D; Grant CW
    Biophys J; 1995 Jan; 68(1):179-86. PubMed ID: 7711240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread tissue distribution and synthetic pathway of polyunsaturated C24:2 sphingolipids in mammals.
    Edagawa M; Sawai M; Ohno Y; Kihara A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Dec; 1863(12):1441-1448. PubMed ID: 30251650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure of galactosylceramide to galactose oxidase in liposomes: dependence on lipid environment and ceramide composition.
    Stewart RJ; Boggs JM
    Biochemistry; 1993 Jun; 32(21):5605-14. PubMed ID: 8504080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier transform infrared spectroscopy and differential scanning calorimetry studies of fatty acid homogeneous ceramide 2.
    Chen H; Mendelsohn R; Rerek ME; Moore DJ
    Biochim Biophys Acta; 2000 Sep; 1468(1-2):293-303. PubMed ID: 11018673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of sphingolipids from mycopathogens: factors correlating with expression of 2-hydroxy fatty acyl (E)-Delta 3-unsaturation in cerebrosides of Paracoccidioides brasiliensis and Aspergillus fumigatus.
    Toledo MS; Levery SB; Straus AH; Suzuki E; Momany M; Glushka J; Moulton JM; Takahashi HK
    Biochemistry; 1999 Jun; 38(22):7294-306. PubMed ID: 10353841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural polymorphism in bovine brain galactocerebroside and its two major subfractions.
    Archibald DD; Yager P
    Biochemistry; 1992 Sep; 31(37):9045-55. PubMed ID: 1390691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric synthesis of water-soluble analogues of galactosylceramide, an HIV-1 receptor: new tools to study virus-glycolipid interactions.
    Villard R; Hammache D; Delapierre G; Fotiadu F; Buono G; Fantini J
    Chembiochem; 2002 Jun; 3(6):517-25. PubMed ID: 12325007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of high axial ratio microstructures from peptides modified with glutamic acid dialkyl amides.
    Lee KC; Lukyanov AN; Gelb MH; Yager P
    Biochim Biophys Acta; 1998 May; 1371(2):168-84. PubMed ID: 9630609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between the structure of the headgroup of sphingolipids and their ability to form complex high axial ratio microstructures.
    Goldstein AS; Gelb MH; Yager P
    Chem Phys Lipids; 2001 Jan; 109(1):1-14. PubMed ID: 11163340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.