These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 9298540)
21. Role of cyclic ADP-ribose in Ca2+-induced Ca2+ release and vasoconstriction in small renal arteries. Teggatz EG; Zhang G; Zhang AY; Yi F; Li N; Zou AP; Li PL Microvasc Res; 2005 Jul; 70(1-2):65-75. PubMed ID: 16095628 [TBL] [Abstract][Full Text] [Related]
22. Aging alters neuronal nitric oxide release from rat mesenteric arteries: role of presynaptic beta-adrenoceptors. Ferrer M; Balfagón G Clin Sci (Lond); 2001 Oct; 101(4):321-8. PubMed ID: 11566067 [TBL] [Abstract][Full Text] [Related]
23. Phase resetting of arterial vasomotion by burst stimulation of perivascular nerves. Borovik A; Golubinskaya V; Tarasova O; Aalkjaer C; Nilsson H J Vasc Res; 2005; 42(2):165-73. PubMed ID: 15767763 [TBL] [Abstract][Full Text] [Related]
24. Ligustilide induces vasodilatation via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Cao YX; Zhang W; He JY; He LC; Xu CB Vascul Pharmacol; 2006 Sep; 45(3):171-6. PubMed ID: 16807126 [TBL] [Abstract][Full Text] [Related]
25. The evaluation of the N-type channel blocking properties of cilnidipine and other voltage-dependent calcium antagonists. Nap A; Mathy MJ; Balt JC; Pfaffendorf M; van Zwieten PA Fundam Clin Pharmacol; 2004 Jun; 18(3):309-19. PubMed ID: 15147282 [TBL] [Abstract][Full Text] [Related]
26. Dexamethasone decreases contraction to electrical field stimulation in mesenteric arteries from spontaneously hypertensive rats through decreases in thromboxane A2 release. Aras-Lopéz R; Blanco-Rivero J; Xavier FE; Salaices M; Ferrer M; Balfagón G J Pharmacol Exp Ther; 2007 Sep; 322(3):1129-36. PubMed ID: 17562850 [TBL] [Abstract][Full Text] [Related]
27. Antiphase oscillations of endothelium and smooth muscle [Ca2+]i in vasomotion of rat mesenteric small arteries. Rahman A; Hughes A; Matchkov V; Nilsson H; Aalkjaer C Cell Calcium; 2007 Dec; 42(6):536-47. PubMed ID: 17524481 [TBL] [Abstract][Full Text] [Related]
28. Multiple actions of halothane on contractile response to noradrenaline in isolated mesenteric resistance arteries. Yoshino J; Akata T; Izumi K; Takahashi S Naunyn Schmiedebergs Arch Pharmacol; 2005 Jun; 371(6):500-15. PubMed ID: 16012873 [TBL] [Abstract][Full Text] [Related]
30. The mechanism of action of alpha 2-adrenoceptors in human isolated subcutaneous resistance arteries. Parkinson NA; Hughes AD Br J Pharmacol; 1995 Aug; 115(8):1463-8. PubMed ID: 8564206 [TBL] [Abstract][Full Text] [Related]
31. Neurally evoked responses of rat mesenteric resistance arteries are dependent on intracellular release of calcium. Nielsen H; Mulvany MJ Acta Physiol Scand; 1990 Dec; 140(4):459-66. PubMed ID: 2082710 [TBL] [Abstract][Full Text] [Related]
32. Epinephrine facilitates neurogenic responses in isolated segments of dog mesenteric arteries. Borkowski KR; Kwan CY; Daniel EE J Cardiovasc Pharmacol; 1989 May; 13(5):760-6. PubMed ID: 2472525 [TBL] [Abstract][Full Text] [Related]
33. Sympathetic transmission in small mesenteric arteries from the rat: influence of impulse pattern. Sjöblom-Widfeldt N; Nilsson H Acta Physiol Scand; 1990 Apr; 138(4):523-8. PubMed ID: 1972309 [TBL] [Abstract][Full Text] [Related]
34. Adrenergic nervous control of resistance and capacitance vessels. Studies on isolated blood vessels from the rat. Nilsson H Acta Physiol Scand Suppl; 1985; 541():1-34. PubMed ID: 3862335 [TBL] [Abstract][Full Text] [Related]
35. A quantitative description of the contraction of blood vessels following the release of noradrenaline from sympathetic varicosities. Bennett MR; Farnell L; Gibson WG J Theor Biol; 2005 May; 234(1):107-22. PubMed ID: 15721040 [TBL] [Abstract][Full Text] [Related]
36. Preservation of vascular function in rat mesenteric resistance arteries following cold storage, studied by small vessel myography. McIntyre CA; Williams BC; Lindsay RM; McKnight JA; Hadoke PW Br J Pharmacol; 1998 Apr; 123(8):1555-60. PubMed ID: 9605561 [TBL] [Abstract][Full Text] [Related]
37. Inhibition of norepinephrine and caffeine-induced activation by ryanodine and thapsigargin in rat mesenteric arteries. Garcha RS; Hughes AD J Cardiovasc Pharmacol; 1995 May; 25(5):840-6. PubMed ID: 7630163 [TBL] [Abstract][Full Text] [Related]
38. Minor role for direct adrenoceptor-mediated calcium entry in rat mesenteric small arteries. Nilsson H; Jensen PE; Mulvany MJ J Vasc Res; 1994; 31(6):314-21. PubMed ID: 7986955 [TBL] [Abstract][Full Text] [Related]
39. Calcium dependency of the post-stimulatory potentiation of the neurogenic response in small mesenteric arteries from the rat. Sjöblom-Widfeldt N; Nilsson H Acta Physiol Scand; 1989 Nov; 137(3):443-8. PubMed ID: 2596336 [TBL] [Abstract][Full Text] [Related]
40. Pharmacological investigation of signaling mechanisms contributing to phasic and tonic components of the contractile response of rat arteries to noradrenaline. Weber LP; Chow WL; Moshenko J; Belsher S; MacLeod KM Can J Physiol Pharmacol; 1995 May; 73(5):594-601. PubMed ID: 7585325 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]