BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9298623)

  • 1. Oriented and lengthwise growth of octacalcium phosphate on collagenous matrix in vitro.
    Iijima M; Moriwaki Y; Kuboki Y
    Connect Tissue Res; 1997; 36(1):51-61. PubMed ID: 9298623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oriented growth of octacalcium phosphate on and inside the collagenous matrix in vitro.
    Iijima M; Moriwaki Y; Kuboki Y
    Connect Tissue Res; 1995; 33(1-3):197-202. PubMed ID: 7554955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of solution pH on the calcium phosphates formation and ionic diffusion on and through the collagenous matrix.
    Iijima MY; Moriwaki Y; Yamaguchi R; Kuboki Y
    Connect Tissue Res; 1997; 36(2):73-83. PubMed ID: 9298625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of bone-like apatite enhanced by hydrolysis of octacalcium phosphate crystals deposited in collagen matrix.
    Honda Y; Kamakura S; Sasaki K; Suzuki O
    J Biomed Mater Res B Appl Biomater; 2007 Feb; 80(2):281-9. PubMed ID: 16850470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of F- on apatite-octacalcium phosphate intergrowth and crystal morphology in a model system of tooth enamel formation.
    Iijima M; Tohda H; Suzuki H; Yanagisawa T; Moriwaki Y
    Calcif Tissue Int; 1992 Apr; 50(4):357-61. PubMed ID: 1571848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluoride analysis of apatite crystals with a central planar OCP inclusion: concerning the role of F- ions on apatite/OCP/apatite structure formation.
    Iijima M; Nelson DG; Pan Y; Kreinbrink AT; Adachi M; Goto T; Moriwaki Y
    Calcif Tissue Int; 1996 Nov; 59(5):377-84. PubMed ID: 8849405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural, morphological and surface characteristics of two types of octacalcium phosphate-derived fluoride-containing apatitic calcium phosphates.
    Shiwaku Y; Anada T; Yamazaki H; Honda Y; Morimoto S; Sasaki K; Suzuki O
    Acta Biomater; 2012 Dec; 8(12):4417-25. PubMed ID: 22868193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting the transformation of octacalcium phosphate to apatite in vitro.
    Ban S; Matsuura M; Arimoto N; Hayashizaki J; Itoh Y; Hasegawa J
    Dent Mater J; 1993 Dec; 12(2):106-17. PubMed ID: 8004905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-mediated transformation of octacalcium phosphate (OCP) to apatite.
    LeGeros RZ; Daculsi G; Orly I; Abergas T; Torres W
    Scanning Microsc; 1989 Mar; 3(1):129-37; discussion 137-8. PubMed ID: 2740859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution electron microscopy of nonstoichiometric apatite crystals.
    Nelson DG; Barry JC
    Anat Rec; 1989 Jun; 224(2):265-76. PubMed ID: 2672890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of some physico-chemical properties of matrix on lengthwise and oriented growth of octacalcium phosphate crystal.
    Iijima M; Moriwaki Y; Kuboki Y
    Connect Tissue Res; 1998; 38(1-4):171-9; discussion 201-5. PubMed ID: 11063025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of apatite crystal growth by the co-operative effect of a recombinant porcine amelogenin and fluoride.
    Iijima M; Du C; Abbott C; Doi Y; Moradian-Oldak J
    Eur J Oral Sci; 2006 May; 114 Suppl 1():304-7; discussion 327-9, 382. PubMed ID: 16674703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transformation of octacalcium phosphate in vivo and in vitro.
    Ban S; Jinde T; Hasegawa J
    Dent Mater J; 1992 Dec; 11(2):130-40. PubMed ID: 1304969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid.
    Ban S; Maruno S
    Biomaterials; 1998 Jul; 19(14):1245-53. PubMed ID: 9720888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro model of potential metal cation exchanges in biological apatite.
    Shi H; Zhang J; Ye X; Wu T; Ye J
    Biointerphases; 2017 Nov; 13(1):018501. PubMed ID: 29161878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and transformation of octacalcium phosphate, OCP: a preliminary report.
    LeGeros RZ; Kijkowska R; LeGeros JP
    Scan Electron Microsc; 1984; (Pt 4):1771-7. PubMed ID: 6523053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible structural changes of octacalcium phosphate and labile acid phosphate.
    Suzuki O; Yagishita H; Amano T; Aoba T
    J Dent Res; 1995 Nov; 74(11):1764-9. PubMed ID: 8530738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation.
    Tseng YH; Mou CY; Chan JC
    J Am Chem Soc; 2006 May; 128(21):6909-18. PubMed ID: 16719471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oriented crystallization of octacalcium phosphate into beta-chitin scaffold.
    Falini G; Fermani S; Ripamonti A
    J Inorg Biochem; 2001 Apr; 84(3-4):255-8. PubMed ID: 11374588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elongated growth of octacalcium phosphate crystals in recombinant amelogenin gels under controlled ionic flow.
    Iijima M; Moriwaki Y; Wen HB; Fincham AG; Moradian-Oldak J
    J Dent Res; 2002 Jan; 81(1):69-73. PubMed ID: 11820371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.