These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 9298811)

  • 1. Simultaneous, Single-Cell Measurement of Messenger RNA, Cell Surface Proteins, and Intracellular Proteins.
    Soh KT; Tario JD; Colligan S; Maguire O; Pan D; Minderman H; Wallace PK
    Curr Protoc Cytom; 2016 Jan; 75():7.45.1-7.45.33. PubMed ID: 26742656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed Quantitative In Situ Hybridization for Mammalian or Bacterial Cells in Suspension: qHCR Flow Cytometry (v3.0).
    Schwarzkopf M; Choi HMT; Pierce NA
    Methods Mol Biol; 2020; 2148():127-141. PubMed ID: 32394379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of virus-infected cells using RNA FISH-Flow.
    Warren CJ; Barbachano-Guerrero A; Huey D; Yang Q; Worden-Sapper ER; Kuhn JH; Sawyer SL
    STAR Protoc; 2023 May; 4(2):102291. PubMed ID: 37209094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Multiplexed and Simultaneous Characterization of Protein and RNA in Single Cells by Flow or Mass Cytometry Platforms Using Proximity Ligation Assay for RNA.
    Duckworth AD; Slupsky JR; Kalakonda N
    Methods Mol Biol; 2024; 2752():143-165. PubMed ID: 38194033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Measurement of Plasma Membrane Protein Internalisation and Recycling in Heterogenous Cellular Samples by Flow Cytometry.
    Lim HJ; McWilliam HEG
    Bio Protoc; 2024 May; 14(9):e4986. PubMed ID: 38737503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-FISH as a Tool for Studying Bacteria, Fungi and Viruses.
    Freen-van Heeren JJ
    BioTech (Basel); 2021 Oct; 10(4):. PubMed ID: 35822795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration.
    Sheard MA; Ghent MV; Cabral DJ; Lee JC; Khankaldyyan V; Ji L; Wu SQ; Kang MH; Sposto R; Asgharzadeh S; Reynolds CP
    Exp Cell Res; 2015 May; 334(1):78-89. PubMed ID: 25845499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry.
    Porichis F; Hart MG; Griesbeck M; Everett HL; Hassan M; Baxter AE; Lindqvist M; Miller SM; Soghoian DZ; Kavanagh DG; Reynolds S; Norris B; Mordecai SK; Nguyen Q; Lai C; Kaufmann DE
    Nat Commun; 2014 Dec; 5():5641. PubMed ID: 25472703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of low abundance RNA molecules in individual cells by flow cytometry.
    Hanley MB; Lomas W; Mittar D; Maino V; Park E
    PLoS One; 2013; 8(2):e57002. PubMed ID: 23441230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking expression and subcellular localization of RNA and protein species using high-throughput single cell imaging flow cytometry.
    Borah S; Nichols LA; Hassman LM; Kedes DH; Steitz JA
    RNA; 2012 Aug; 18(8):1573-9. PubMed ID: 22745225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring viral RNA in infected cells with LNA flow-FISH.
    Robertson KL; Verhoeven AB; Thach DC; Chang EL
    RNA; 2010 Aug; 16(8):1679-85. PubMed ID: 20584898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. beta1 integrin expression increases susceptibility of memory B cells to Epstein-Barr virus infection.
    Dorner M; Zucol F; Alessi D; Haerle SK; Bossart W; Weber M; Byland R; Bernasconi M; Berger C; Tugizov S; Speck RF; Nadal D
    J Virol; 2010 Jul; 84(13):6667-77. PubMed ID: 20427540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of flow cytometry to clinical microbiology.
    Alvarez-Barrientos A; Arroyo J; Cantón R; Nombela C; Sánchez-Pérez M
    Clin Microbiol Rev; 2000 Apr; 13(2):167-95. PubMed ID: 10755996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential use of paraformaldehyde and methanol as optimal conditions for the direct quantification of ZEBRA and rta antigens by flow cytometry.
    Imbert-Marcille BM; Coste-Burel M; Robillard N; Foucaud-Gamen J; Billaudel S; Drouet E
    Clin Diagn Lab Immunol; 2000 Mar; 7(2):206-11. PubMed ID: 10702494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interferon regulatory factor 2 represses the Epstein-Barr virus BamHI Q latency promoter in type III latency.
    Zhang L; Pagano JS
    Mol Cell Biol; 1999 Apr; 19(4):3216-23. PubMed ID: 10082588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epstein-Barr virus suspension cell assay using in situ hybridization and flow cytometry.
    Crouch J; Leitenberg D; Smith BR; Howe JG
    Cytometry; 1997 Sep; 29(1):50-7. PubMed ID: 9298811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A quantitative analysis of the cells infected with Epstein-Barr virus in the peripheral blood mononuclear cells derived from the patients with infectious mononucleosis].
    Arai T; Yamamoto H; Hirosawa N; Kozima H; Ikezaki A; Okazaki M; Kagimoto S; Joh K; Oh-Ishi T
    Rinsho Byori; 1996 Sep; 44(9):853-9. PubMed ID: 8911070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epstein-Barr virus detection in non-Hodgkin's lymphoma of the oral cavity: an immunocytochemical and in situ hybridization study.
    Leong IT; Fernandes BJ; Mock D
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2001 Aug; 92(2):184-93. PubMed ID: 11505266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Epstein-Barr virus (EBV)-infected lymphocyte subtypes by flow cytometric in situ hybridization in EBV-associated lymphoproliferative diseases.
    Kimura H; Miyake K; Yamauchi Y; Nishiyama K; Iwata S; Iwatsuki K; Gotoh K; Kojima S; Ito Y; Nishiyama Y
    J Infect Dis; 2009 Oct; 200(7):1078-87. PubMed ID: 19698076
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.