These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1106 related articles for article (PubMed ID: 9298954)
1. Fluorescence quenching by chlorophyll cations in photosystem II. Schweitzer RH; Brudvig GW Biochemistry; 1997 Sep; 36(38):11351-9. PubMed ID: 9298954 [TBL] [Abstract][Full Text] [Related]
2. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH. Bruce D; Samson G; Carpenter C Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772 [TBL] [Abstract][Full Text] [Related]
3. Identification of histidine 118 in the D1 polypeptide of photosystem II as the axial ligand to chlorophyll Z. Stewart DH; Cua A; Chisholm DA; Diner BA; Bocian DF; Brudvig GW Biochemistry; 1998 Jul; 37(28):10040-6. PubMed ID: 9665709 [TBL] [Abstract][Full Text] [Related]
4. Photooxidation pathway of chlorophyll Z in photosystem II as Studied by Fourier transform infrared spectroscopy. Kitajima Y; Noguchi T Biochemistry; 2006 Feb; 45(6):1938-45. PubMed ID: 16460040 [TBL] [Abstract][Full Text] [Related]
5. Fourier transform infrared study of the cation radical of P680 in the photosystem II reaction center: evidence for charge delocalization on the chlorophyll dimer. Noguchi T; Tomo T; Inoue Y Biochemistry; 1998 Sep; 37(39):13614-25. PubMed ID: 9753448 [TBL] [Abstract][Full Text] [Related]
6. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids. Vasil'ev S; Bruce D Biochemistry; 1998 Aug; 37(31):11046-54. PubMed ID: 9693000 [TBL] [Abstract][Full Text] [Related]
7. A theoretical study on effect of the initial redox state of cytochrome b559 on maximal chlorophyll fluorescence level (F(M)): implications for photoinhibition of photosystem II. Lazár D; Ilík P; Kruk J; Strzałka K; Naus J J Theor Biol; 2005 Mar; 233(2):287-300. PubMed ID: 15619367 [TBL] [Abstract][Full Text] [Related]
8. UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Vass I; Sass L; Spetea C; Bakou A; Ghanotakis DF; Petrouleas V Biochemistry; 1996 Jul; 35(27):8964-73. PubMed ID: 8688433 [TBL] [Abstract][Full Text] [Related]
9. Carotenoid oxidation in photosystem II. Hanley J; Deligiannakis Y; Pascal A; Faller P; Rutherford AW Biochemistry; 1999 Jun; 38(26):8189-95. PubMed ID: 10387064 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic characterization of intermediate steps involved in donor-side-induced photoinhibition of photosystem II. Jegerschöld C; Styring S Biochemistry; 1996 Jun; 35(24):7794-801. PubMed ID: 8672480 [TBL] [Abstract][Full Text] [Related]
11. A time-resolved FTIR difference study of the plastoquinone QA and redox-active tyrosine YZ interactions in photosystem II. Zhang H; Razeghifard MR; Fischer G; Wydrzynski T Biochemistry; 1997 Sep; 36(39):11762-8. PubMed ID: 9305966 [TBL] [Abstract][Full Text] [Related]
12. Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. Allakhverdiev SI; Klimov VV; Carpentier R Biochemistry; 1997 Apr; 36(14):4149-54. PubMed ID: 9100008 [TBL] [Abstract][Full Text] [Related]
13. Formation of split electron paramagnetic resonance signals in photosystem II suggests that tyrosine(Z) can be photooxidized at 5 K in the S0 and S1 states of the oxygen-evolving complex. Zhang C; Styring S Biochemistry; 2003 Jul; 42(26):8066-76. PubMed ID: 12834358 [TBL] [Abstract][Full Text] [Related]
14. Assembly of the tetra-Mn site of photosynthetic water oxidation by photoactivation: Mn stoichiometry and detection of a new intermediate. Ananyev GM; Dismukes GC Biochemistry; 1996 Apr; 35(13):4102-9. PubMed ID: 8672445 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants. Miyake C; Shinzaki Y; Miyata M; Tomizawa K Plant Cell Physiol; 2004 Oct; 45(10):1426-33. PubMed ID: 15564526 [TBL] [Abstract][Full Text] [Related]
16. Oxidation of the two beta-carotene molecules in the photosystem II reaction center. Telfer A; Frolov D; Barber J; Robert B; Pascal A Biochemistry; 2003 Feb; 42(4):1008-15. PubMed ID: 12549921 [TBL] [Abstract][Full Text] [Related]
17. Perturbation of the structure of P680 and the charge distribution on its radical cation in isolated reaction center complexes of photosystem II as revealed by fourier transform infrared spectroscopy. Okubo T; Tomo T; Sugiura M; Noguchi T Biochemistry; 2007 Apr; 46(14):4390-7. PubMed ID: 17371054 [TBL] [Abstract][Full Text] [Related]
18. The tetranuclear manganese cluster in photosystem II: location and magnetic properties of the S2 state as determined by saturation-recovery EPR spectroscopy. Koulougliotis D; Schweitzer RH; Brudvig GW Biochemistry; 1997 Aug; 36(32):9735-46. PubMed ID: 9245405 [TBL] [Abstract][Full Text] [Related]
19. Unique binding site for Mn2+ ion responsible for reducing an oxidized YZ tyrosine in manganese-depleted photosystem II membranes. Ono TA; Mino H Biochemistry; 1999 Jul; 38(27):8778-85. PubMed ID: 10393553 [TBL] [Abstract][Full Text] [Related]
20. Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition. Roach T; Sedoud A; Krieger-Liszkay A Biochim Biophys Acta; 2013 Oct; 1827(10):1183-90. PubMed ID: 23791666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]