These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9298983)

  • 21. Filopodia initiate choices made by sensory neuron growth cones at laminin/fibronectin borders in vitro.
    Gomez TM; Letourneau PC
    J Neurosci; 1994 Oct; 14(10):5959-72. PubMed ID: 7931556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyramidal neuron morphogenesis requires a septin network that stabilizes filopodia and suppresses lamellipodia during neurite initiation.
    Radler MR; Liu X; Peng M; Doyle B; Toyo-Oka K; Spiliotis ET
    Curr Biol; 2023 Feb; 33(3):434-448.e8. PubMed ID: 36538929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Filopodial adhesion does not predict growth cone steering events in vivo.
    Isbister CM; O'Connor TP
    J Neurosci; 1999 Apr; 19(7):2589-600. PubMed ID: 10087072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of soluble laminin on organelle transport and neurite growth in cultured mouse dorsal root ganglion neurons: difference between primary neurites and branches.
    Kohno K; Kawakami T; Hiruma H
    J Cell Physiol; 2005 Nov; 205(2):253-61. PubMed ID: 15887233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct calcium signaling within neuronal growth cones and filopodia.
    Davenport RW; Dou P; Mills LR; Kater SB
    J Neurobiol; 1996 Sep; 31(1):1-15. PubMed ID: 9120430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Autonomous regulation of growth cone filopodia.
    Rehder V; Cheng S
    J Neurobiol; 1998 Feb; 34(2):179-92. PubMed ID: 9468388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid effects of laminin on the growth cone.
    Rivas RJ; Burmeister DW; Goldberg DJ
    Neuron; 1992 Jan; 8(1):107-15. PubMed ID: 1730003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF).
    Menna E; Disanza A; Cagnoli C; Schenk U; Gelsomino G; Frittoli E; Hertzog M; Offenhauser N; Sawallisch C; Kreienkamp HJ; Gertler FB; Di Fiore PP; Scita G; Matteoli M
    PLoS Biol; 2009 Jun; 7(6):e1000138. PubMed ID: 19564905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1.
    Lebrand C; Dent EW; Strasser GA; Lanier LM; Krause M; Svitkina TM; Borisy GG; Gertler FB
    Neuron; 2004 Apr; 42(1):37-49. PubMed ID: 15066263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motile areas of leech neurites are rich in microfilaments and two actin-binding proteins: gelsolin and profilin.
    Neely MD; Macaluso E
    Proc Biol Sci; 1997 Nov; 264(1388):1701-6. PubMed ID: 9404032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth cone collapse and neurite retraction from cultured Helisoma neurons in response to antibody Fab fragments against an extracellular matrix protein.
    Miller JD; Hadley RD; Hammond CE
    Brain Res Dev Brain Res; 1994 Jun; 79(2):203-18. PubMed ID: 7955319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gelsolin regulates cardiac remodeling after myocardial infarction through DNase I-mediated apoptosis.
    Li GH; Shi Y; Chen Y; Sun M; Sader S; Maekawa Y; Arab S; Dawood F; Chen M; De Couto G; Liu Y; Fukuoka M; Yang S; Da Shi M; Kirshenbaum LA; McCulloch CA; Liu P
    Circ Res; 2009 Apr; 104(7):896-904. PubMed ID: 19246681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Villin-1 and Gelsolin Regulate Changes in Actin Dynamics That Affect Cell Survival Signaling Pathways and Intestinal Inflammation.
    Roy S; Esmaeilniakooshkghazi A; Patnaik S; Wang Y; George SP; Ahrorov A; Hou JK; Herron AJ; Sesaki H; Khurana S
    Gastroenterology; 2018 Apr; 154(5):1405-1420.e2. PubMed ID: 29274870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contact with isolated sclerotome cells steers sensory growth cones by altering distinct elements of extension.
    Steketee MB; Tosney KW
    J Neurosci; 1999 May; 19(9):3495-506. PubMed ID: 10212309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Filopodial calcium transients promote substrate-dependent growth cone turning.
    Gomez TM; Robles E; Poo M; Spitzer NC
    Science; 2001 Mar; 291(5510):1983-7. PubMed ID: 11239161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gelsolin overexpression enhances neurite outgrowth in PC12 cells.
    Furnish EJ; Zhou W; Cunningham CC; Kas JA; Schmidt CE
    FEBS Lett; 2001 Nov; 508(2):282-6. PubMed ID: 11718731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth cone behavior in the presence of soluble chondroitin sulfate proteoglycan (CSPG), compared to behavior on CSPG bound to laminin or fibronectin.
    Snow DM; Brown EM; Letourneau PC
    Int J Dev Neurosci; 1996 Jun; 14(3):331-49. PubMed ID: 8842808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons.
    Furukawa K; Fu W; Li Y; Witke W; Kwiatkowski DJ; Mattson MP
    J Neurosci; 1997 Nov; 17(21):8178-86. PubMed ID: 9334393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NeuronGrowth, a software for automatic quantification of neurite and filopodial dynamics from time-lapse sequences of digital images.
    Fanti Z; Martinez-Perez ME; De-Miguel FF
    Dev Neurobiol; 2011 Oct; 71(10):870-81. PubMed ID: 21913334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developmental regulation of plasticity along neurite shafts.
    Williams CV; Davenport RW; Dou P; Kater SB
    J Neurobiol; 1995 Jun; 27(2):127-40. PubMed ID: 7658196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.