These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
430 related articles for article (PubMed ID: 9299109)
1. In vitro study of the protective effect of trehalose and dextran during freezing of human red blood cells in liquid nitrogen. Pellerin-Mendes C; Million L; Marchand-Arvier M; Labrude P; Vigneron C Cryobiology; 1997 Sep; 35(2):173-86. PubMed ID: 9299109 [TBL] [Abstract][Full Text] [Related]
2. Addition of oligosaccharide decreases the freezing lesions on human red blood cell membrane in the presence of dextran and glucose. Quan GB; Han Y; Liu MX; Fang L; Du W; Ren SP; Wang JX; Wang Y Cryobiology; 2011 Apr; 62(2):135-44. PubMed ID: 21276438 [TBL] [Abstract][Full Text] [Related]
3. Effects of pre-freeze incubation of human red blood cells with various sugars on postthaw recovery when using a dextran-rapid cooling protocol. Quan GB; Han Y; Liu MX; Gao F Cryobiology; 2009 Dec; 59(3):258-67. PubMed ID: 19665011 [TBL] [Abstract][Full Text] [Related]
4. Intracellular sugars improve survival of human red blood cells cryopreserved at -80 degrees C in the presence of polyvinyl pyrrolidone and human serum albumin. Quan G; Zhang L; Guo Y; Liu M; Wang J; Wang Y; Dong B; Liu A; Zhang J; Han Y Cryo Letters; 2007; 28(2):95-108. PubMed ID: 17522728 [TBL] [Abstract][Full Text] [Related]
5. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes. Stoll C; Holovati JL; Acker JP; Wolkers WF Biotechnol Prog; 2012; 28(2):364-71. PubMed ID: 22275294 [TBL] [Abstract][Full Text] [Related]
6. Red blood cell phenotype fidelity following glycerol cryopreservation optimized for research purposes. Rogers SC; Dosier LB; McMahon TJ; Zhu H; Timm D; Zhang H; Herbert J; Atallah J; Palmer GM; Cook A; Ernst M; Prakash J; Terng M; Towfighi P; Doctor R; Said A; Joens MS; Fitzpatrick JAJ; Hanna G; Lin X; Reisz JA; Nemkov T; D'Alessandro A; Doctor A PLoS One; 2018; 13(12):e0209201. PubMed ID: 30576340 [TBL] [Abstract][Full Text] [Related]
7. In vivo circulation of mouse red blood cells frozen in the presence of dextran and glucose. Quan GB; Liu MX; Han Y; Fang L; Du W; Wang JX Cryobiology; 2010 Aug; 61(1):10-6. PubMed ID: 20176010 [TBL] [Abstract][Full Text] [Related]
8. Cryopreserved red blood cells maintain allosteric control of oxygen binding when utilizing trehalose as a cryoprotectant. Elder CA; Smith JS; Almosawi M; Mills E; Janis BR; Kopechek JA; Wolkers WF; Menze MA Cryobiology; 2024 Mar; 114():104793. PubMed ID: 37979827 [TBL] [Abstract][Full Text] [Related]
9. Osmotic tolerance limits of red blood cells from umbilical cord blood. Zhurova M; Lusianti RE; Higgins AZ; Acker JP Cryobiology; 2014 Aug; 69(1):48-54. PubMed ID: 24836371 [TBL] [Abstract][Full Text] [Related]
10. Effects of trehalose-loaded liposomes on red blood cell response to freezing and post-thaw membrane quality. Holovati JL; Gyongyossy-Issa MIC; Acker JP Cryobiology; 2009 Feb; 58(1):75-83. PubMed ID: 19059392 [TBL] [Abstract][Full Text] [Related]
11. Altered processing of thawed red cells to improve the in vitro quality during postthaw storage at 4 degrees C. Lagerberg JW; Truijens-de Lange R; de Korte D; Verhoeven AJ Transfusion; 2007 Dec; 47(12):2242-9. PubMed ID: 17714415 [TBL] [Abstract][Full Text] [Related]
12. [Trehalose loading red blood cells and freeze-drying preservation]. Chen Y; Lu ZG; Han Y Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2006 Jun; 14(3):605-9. PubMed ID: 16800952 [TBL] [Abstract][Full Text] [Related]
14. Natural cryoprotectants combinations of l-proline and trehalose for red blood cells cryopreservation. Dou M; Lu C; Sun Z; Rao W Cryobiology; 2019 Dec; 91():23-29. PubMed ID: 31693877 [TBL] [Abstract][Full Text] [Related]
15. Loading red blood cells with trehalose: a step towards biostabilization. Satpathy GR; Török Z; Bali R; Dwyre DM; Little E; Walker NJ; Tablin F; Crowe JH; Tsvetkova NM Cryobiology; 2004 Oct; 49(2):123-36. PubMed ID: 15351684 [TBL] [Abstract][Full Text] [Related]
16. An experiment with glycerol-frozen red blood cells stored at -80 degrees C for up to 37 years. Valeri CR; Ragno G; Pivacek LE; Cassidy GP; Srey R; Hansson-Wicher M; Leavy ME Vox Sang; 2000; 79(3):168-74. PubMed ID: 11111236 [TBL] [Abstract][Full Text] [Related]
17. Freeze drying of red blood cells: the use of directional freezing and a new radio frequency lyophilization device. Arav A; Natan D Biopreserv Biobank; 2012 Aug; 10(4):386-94. PubMed ID: 24849889 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of red blood cells stored at -80 degrees C in excess of 10 years. Lecak J; Scott K; Young C; Hannon J; Acker JP Transfusion; 2004 Sep; 44(9):1306-13. PubMed ID: 15318853 [TBL] [Abstract][Full Text] [Related]
19. Effect of phosphoenolpyruvate on metabolic and morphological recovery of red cells after prolonged liquid storage and subsequent freezing in glycerol medium. Ohyama M; Aritake H; Shiraki H; Hamasaki N; Maeda Y Cryobiology; 1992 Jun; 29(3):342-6. PubMed ID: 1499319 [TBL] [Abstract][Full Text] [Related]
20. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Briard JG; Poisson JS; Turner TR; Capicciotti CJ; Acker JP; Ben RN Sci Rep; 2016 Mar; 6():23619. PubMed ID: 27021850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]