These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 9299326)
1. Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen. Podobnik M; Kuhelj R; Turk V; Turk D J Mol Biol; 1997 Sep; 271(5):774-88. PubMed ID: 9299326 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of human procathepsin X: a cysteine protease with the proregion covalently linked to the active site cysteine. Sivaraman J; Nägler DK; Zhang R; Ménard R; Cygler M J Mol Biol; 2000 Jan; 295(4):939-51. PubMed ID: 10656802 [TBL] [Abstract][Full Text] [Related]
3. The occluding loop in cathepsin B defines the pH dependence of inhibition by its propeptide. Quraishi O; Nägler DK; Fox T; Sivaraman J; Cygler M; Mort JS; Storer AC Biochemistry; 1999 Apr; 38(16):5017-23. PubMed ID: 10213604 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures of human procathepsin B at 3.2 and 3.3 Angstroms resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide. Turk D; Podobnik M; Kuhelj R; Dolinar M; Turk V FEBS Lett; 1996 Apr; 384(3):211-4. PubMed ID: 8617355 [TBL] [Abstract][Full Text] [Related]
5. The crystal structure of human procathepsin K. LaLonde JM; Zhao B; Janson CA; D'Alessio KJ; McQueney MS; Orsini MJ; Debouck CM; Smith WW Biochemistry; 1999 Jan; 38(3):862-9. PubMed ID: 9893980 [TBL] [Abstract][Full Text] [Related]
6. Stefin A displaces the occluding loop of cathepsin B only by as much as required to bind to the active site cleft. Renko M; Požgan U; Majera D; Turk D FEBS J; 2010 Oct; 277(20):4338-45. PubMed ID: 20860624 [TBL] [Abstract][Full Text] [Related]
7. Proposed amino acid sequence and the 1.63 A X-ray crystal structure of a plant cysteine protease, ervatamin B: some insights into the structural basis of its stability and substrate specificity. Biswas S; Chakrabarti C; Kundu S; Jagannadham MV; Dattagupta JK Proteins; 2003 Jun; 51(4):489-97. PubMed ID: 12784208 [TBL] [Abstract][Full Text] [Related]
8. Structure of human pro-chymase: a model for the activating transition of granule-associated proteases. Reiling KK; Krucinski J; Miercke LJ; Raymond WW; Caughey GH; Stroud RM Biochemistry; 2003 Mar; 42(9):2616-24. PubMed ID: 12614156 [TBL] [Abstract][Full Text] [Related]
9. Quantitative evaluation of each catalytic subsite of cathepsin B for inhibitory activity based on inhibitory activity-binding mode relationship of epoxysuccinyl inhibitors by X-ray crystal structure analyses of complexes. Watanabe D; Yamamoto A; Tomoo K; Matsumoto K; Murata M; Kitamura K; Ishida T J Mol Biol; 2006 Oct; 362(5):979-93. PubMed ID: 16950396 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of an activation intermediate of cathepsin E. Ostermann N; Gerhartz B; Worpenberg S; Trappe J; Eder J J Mol Biol; 2004 Sep; 342(3):889-99. PubMed ID: 15342244 [TBL] [Abstract][Full Text] [Related]
11. The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding. Moore SA; Kingston RL; Loomes KM; Hernell O; Bläckberg L; Baker HM; Baker EN J Mol Biol; 2001 Sep; 312(3):511-23. PubMed ID: 11563913 [TBL] [Abstract][Full Text] [Related]
12. Carboxy-monopeptidase substrate specificity of human cathepsin X. Devanathan G; Turnbull JL; Ziomek E; Purisima EO; Ménard R; Sulea T Biochem Biophys Res Commun; 2005 Apr; 329(2):445-52. PubMed ID: 15737607 [TBL] [Abstract][Full Text] [Related]
13. Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts. Nägler DK; Storer AC; Portaro FC; Carmona E; Juliano L; Ménard R Biochemistry; 1997 Oct; 36(41):12608-15. PubMed ID: 9376367 [TBL] [Abstract][Full Text] [Related]
15. Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Cygler M; Sivaraman J; Grochulski P; Coulombe R; Storer AC; Mort JS Structure; 1996 Apr; 4(4):405-16. PubMed ID: 8740363 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for specificity of papain-like cysteine protease proregions toward their cognate enzymes. Groves MR; Coulombe R; Jenkins J; Cygler M Proteins; 1998 Sep; 32(4):504-14. PubMed ID: 9726419 [TBL] [Abstract][Full Text] [Related]
17. Structural and biochemical features distinguish the foot-and-mouth disease virus leader proteinase from other papain-like enzymes. Guarné A; Hampoelz B; Glaser W; Carpena X; Tormo J; Fita I; Skern T J Mol Biol; 2000 Oct; 302(5):1227-40. PubMed ID: 11183785 [TBL] [Abstract][Full Text] [Related]
18. Molecular modeling of human procathepsin E: analysis of salt-bridge interactions between propeptide and enzyme segment. Azim MK; Zaidi ZH Biochem Biophys Res Commun; 1999 Nov; 264(3):825-32. PubMed ID: 10544016 [TBL] [Abstract][Full Text] [Related]
19. Structure of chymopapain at 1.7 A resolution. Maes D; Bouckaert J; Poortmans F; Wyns L; Looze Y Biochemistry; 1996 Dec; 35(50):16292-8. PubMed ID: 8973203 [TBL] [Abstract][Full Text] [Related]
20. Full-length cDNA of human cathepsin F predicts the presence of a cystatin domain at the N-terminus of the cysteine protease zymogen. Nägler DK; Sulea T; Ménard R Biochem Biophys Res Commun; 1999 Apr; 257(2):313-8. PubMed ID: 10198209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]