BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9299566)

  • 1. The heterotrimeric GTP-binding protein, GS, modulates the Cl- conductance of rat parotid acinar secretory granules.
    Watson EL; Izutsu KT; Jacobson KL; Dijulio DH
    Biochem Biophys Res Commun; 1997 Sep; 238(2):638-42. PubMed ID: 9299566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translocation of Arf1 to the secretory granules in rat parotid acinar cells.
    Dohke Y; Hara-Yokoyama M; Fujita-Yoshigaki J; Kahn RA; Kanaho Y; Hashimoto S; Sugiya H; Furuyama S
    Arch Biochem Biophys; 1998 Sep; 357(1):147-54. PubMed ID: 9721194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for G proteins in rat parotid plasma membranes and secretory granule membranes.
    Watson EL; DiJulio D; Kauffman D; Iversen J; Robinovitch MR; Izutsu KT
    Biochem J; 1992 Jul; 285 ( Pt 2)(Pt 2):441-9. PubMed ID: 1637337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-induced lysis of rat parotid secretory granules: possible role of ATP in exocytotic release.
    Oberg SG; Robinovitch MR
    J Supramol Struct; 1980; 13(3):295-304. PubMed ID: 6163038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of multiple subunits of heterotrimeric G proteins on the membrane of secretory granules in rat prolactin anterior pituitary cells.
    Muller L; Picart R; Barret A; Bockaert J; Homburger V; Tougard C
    Mol Cell Neurosci; 1994 Dec; 5(6):556-66. PubMed ID: 7704429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunolocalization of rap1 in the rat parotid gland: detection on secretory granule membranes.
    D'Silva NJ; DiJulio DH; Belton CM; Jacobson KL; Watson EL
    J Histochem Cytochem; 1997 Jul; 45(7):965-73. PubMed ID: 9212822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual modulation of chloride conductance by nucleotides in pancreatic and parotid zymogen granules.
    Thévenod F; Gasser KW; Hopfer U
    Biochem J; 1990 Nov; 272(1):119-26. PubMed ID: 2264815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Gi proteins in reduced vasorelaxation response to beta-adrenoceptor agonists in rat aorta during maturation.
    Baloğlu E; Kiziltepe O; Gürdal H
    Eur J Pharmacol; 2007 Jun; 564(1-3):167-73. PubMed ID: 17395174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Goalpha, Gqalpha, and Gsalpha immunoreactivity associated with the rat pancreatic zymogen granule membrane.
    Padfield PJ; Panesar N
    Biochem Biophys Res Commun; 1997 Aug; 237(2):235-8. PubMed ID: 9268692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride transport across the membrane of parotid secretory granules.
    Gasser KW; Hopfer U
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C413-20. PubMed ID: 2399964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The presence of mast cell granules in rat parotid secretory granule preparations.
    Robinovitch MR; Lagunoff D; Iversen JM
    J Histochem Cytochem; 1980 Dec; 28(12):1351-4. PubMed ID: 7229338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of chloride transport in parotid secretory granules by membrane fluidity.
    Gasser KW; Goldsmith A; Hopfer U
    Biochemistry; 1990 Aug; 29(31):7282-8. PubMed ID: 1698453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of AQP6 in the Mercury-sensitive osmotic lysis of rat parotid secretory granules.
    Matsuki-Fukushima M; Fujita-Yoshigaki J; Murakami M; Katsumata-Kato O; Yokoyama M; Sugiya H
    J Membr Biol; 2013 Mar; 246(3):209-14. PubMed ID: 23183829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of G-proteins in rat parotid gland plasma membranes and granule membranes: presence of distinct components in granule membranes.
    Ali N; Agrawal DK; Cheung P
    Mol Cell Biochem; 1992 Oct; 115(2):155-62. PubMed ID: 1280320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microprobe analysis of maturation-related elemental changes in rat parotid secretory granules.
    Wong JG; Izutsu KT; Robinovitch MR; Iversen JM; Cantino ME; Johnson DE
    Am J Physiol; 1991 Dec; 261(6 Pt 1):C1033-41. PubMed ID: 1767810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of receptor-mediated endocytosis, endosomal acidification and cathepsin D in cholera toxin cytotoxicity.
    El Hage T; Merlen C; Fabrega S; Authier F
    FEBS J; 2007 May; 274(10):2614-29. PubMed ID: 17451437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium transport by pancreatic and parotid zymogen granule membranes.
    Gasser KW; DiDomenico J; Hopfer U
    Am J Physiol; 1988 Dec; 255(6 Pt 1):C705-11. PubMed ID: 3202144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for two conductance/exchange pathways for chloride in rat parotid secretory granules.
    Goddard MK; Izutsu KT; Johnson DE; Ensign WY; Izutsu SM; Wilkinson LE; Chen SW; Wong JL
    Biochem Biophys Res Commun; 1988 Sep; 155(2):984-9. PubMed ID: 3421978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A primary culture of parotid acinar cells retaining capacity for agonists-induced amylase secretion and generation of new secretory granules.
    Fujita-Yoshigaki J; Tagashira A; Yoshigaki T; Furuyama S; Sugiya H
    Cell Tissue Res; 2005 Jun; 320(3):455-64. PubMed ID: 15846515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lectin binding sites in parotid acinar secretory granules of normal and isoproterenol treated rat.
    D'Amico F; Castrogiovanni P; Skarmoutsou E; Sanfilippo S
    J Submicrosc Cytol Pathol; 1999 Jan; 31(1):115-21. PubMed ID: 10363359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.