These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 9299717)

  • 21. Metal removal by sulphate-reducing bacteria from natural and constructed wetlands.
    Webb JS; McGinness S; Lappin-Scott HM
    J Appl Microbiol; 1998 Feb; 84(2):240-8. PubMed ID: 9669876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial treatment of metal pollution--a working biotechnology?
    Gadd GM; White C
    Trends Biotechnol; 1993 Aug; 11(8):353-9. PubMed ID: 7764182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of metal bioremediation by use of microbial surfactants.
    Singh P; Cameotra SS
    Biochem Biophys Res Commun; 2004 Jun; 319(2):291-7. PubMed ID: 15178405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial resistance to metals in the environment.
    Bruins MR; Kapil S; Oehme FW
    Ecotoxicol Environ Saf; 2000 Mar; 45(3):198-207. PubMed ID: 10702338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling.
    Bao P; Li GX; Sun GX; Xu YY; Meharg AA; Zhu YG
    Sci Total Environ; 2018 Feb; 613-614():398-408. PubMed ID: 28918271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal and radionuclide bioremediation: issues, considerations and potentials.
    Barkay T; Schaefer J
    Curr Opin Microbiol; 2001 Jun; 4(3):318-23. PubMed ID: 11378486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A bacterial consortium isolated from an Icelandic fumarole displays exceptionally high levels of sulfate reduction and metals resistance.
    Alexandrino M; Macías F; Costa R; Gomes NC; Canário AV; Costa MC
    J Hazard Mater; 2011 Mar; 187(1-3):362-70. PubMed ID: 21296493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioremediation of contaminated marine sediments can enhance metal mobility due to changes of bacterial diversity.
    Fonti V; Beolchini F; Rocchetti L; Dell'Anno A
    Water Res; 2015 Jan; 68():637-50. PubMed ID: 25462769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbes and metals: interactions in the environment.
    Haferburg G; Kothe E
    J Basic Microbiol; 2007 Dec; 47(6):453-67. PubMed ID: 18072246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions.
    Nielsen G; Hatam I; Abuan KA; Janin A; Coudert L; Blais JF; Mercier G; Baldwin SA
    Water Res; 2018 Sep; 140():268-279. PubMed ID: 29723816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation.
    Butterfield CN; Lee SW; Tebo BM
    Microbiol Spectr; 2016 Apr; 4(2):. PubMed ID: 27227313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioremediation and microbial metabolism of benzo(a)pyrene.
    Ostrem Loss EM; Yu JH
    Mol Microbiol; 2018 Aug; 109(4):433-444. PubMed ID: 29995976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial interactions with chromium: basic biological processes and applications in environmental biotechnology.
    Gutiérrez-Corona JF; Romo-Rodríguez P; Santos-Escobar F; Espino-Saldaña AE; Hernández-Escoto H
    World J Microbiol Biotechnol; 2016 Dec; 32(12):191. PubMed ID: 27718146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial community succession during in situ uranium bioremediation: spatial similarities along controlled flow paths.
    Hwang C; Wu W; Gentry TJ; Carley J; Corbin GA; Carroll SL; Watson DB; Jardine PM; Zhou J; Criddle CS; Fields MW
    ISME J; 2009 Jan; 3(1):47-64. PubMed ID: 18769457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbes in Heavy Metal Remediation: A Review on Current Trends and Patents.
    Mishra GK
    Recent Pat Biotechnol; 2017; 11(3):188-196. PubMed ID: 28116999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal oxidoreduction by microbial cells.
    Wakatsuki T
    J Ind Microbiol; 1995 Feb; 14(2):169-77. PubMed ID: 7766210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The diffusion-active permeable reactive barrier.
    Schwarz AO; Rittmann BE
    J Contam Hydrol; 2010 Mar; 112(1-4):155-62. PubMed ID: 20079951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial methylation of metalloids: arsenic, antimony, and bismuth.
    Bentley R; Chasteen TG
    Microbiol Mol Biol Rev; 2002 Jun; 66(2):250-71. PubMed ID: 12040126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Microbial interactions with heavy metals].
    Cervantes C; Espino-Saldaña AE; Acevedo-Aguilar F; León-Rodriguez IL; Rivera-Cano ME; Avila-Rodríguez M; Wróbel-Kaczmarczyk K; Wróbel-Zasada K; Gutiérrez-Corona JF; Rodríguez-Zavala JS; Moreno-Sánchez R
    Rev Latinoam Microbiol; 2006; 48(2):203-10. PubMed ID: 17578093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.