These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 9299717)

  • 61. A case in support of implementing innovative bio-processes in the metal mining industry.
    Sánchez-Andrea I; Stams AJ; Weijma J; Gonzalez Contreras P; Dijkman H; Rozendal RA; Johnson DB
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190293
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microbial responses to environmental arsenic.
    Páez-Espino D; Tamames J; de Lorenzo V; Cánovas D
    Biometals; 2009 Feb; 22(1):117-30. PubMed ID: 19130261
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transport and attenuation of metal(loid)s in mine tailings amended with organic carbon: Column experiments.
    Lindsay MB; Blowes DW; Ptacek CJ; Condon PD
    J Contam Hydrol; 2011 Jul; 125(1-4):26-38. PubMed ID: 21592616
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Microorganisms in inorganic chemical analysis.
    Godlewska-Zyłkiewicz B
    Anal Bioanal Chem; 2006 Jan; 384(1):114-23. PubMed ID: 16237544
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microbial degradation of an organophosphate pesticide, malathion.
    Singh B; Kaur J; Singh K
    Crit Rev Microbiol; 2014 May; 40(2):146-54. PubMed ID: 23442144
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bioremediation of metal contamination.
    Lovley DR; Coates JD
    Curr Opin Biotechnol; 1997 Jun; 8(3):285-9. PubMed ID: 9206008
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.
    Das S; Dash HR; Chakraborty J
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):2967-84. PubMed ID: 26860944
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Current overview and future perspective in fungal biorecovery of metals from secondary sources.
    Liapun V; Motola M
    J Environ Manage; 2023 Apr; 332():117345. PubMed ID: 36724599
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Immunological alterations in individuals exposed to metal(loid)s in the Panasqueira mining area, Central Portugal.
    Coelho P; García-Lestón J; Costa S; Costa C; Silva S; Fuchs D; Geisler S; Dall'Armi V; Zoffoli R; Bonassi S; Pásaro E; Laffon B; Teixeira JP
    Sci Total Environ; 2014 Mar; 475():1-7. PubMed ID: 24419281
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Root excretion and plant resistance to metal toxicity].
    Chang X; Duan C; Wang H
    Ying Yong Sheng Tai Xue Bao; 2000 Apr; 11(2):315-20. PubMed ID: 11767623
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparison of microbial community composition and activity in sulfate-reducing batch systems remediating mine drainage.
    Pereyra LP; Hiibel SR; Pruden A; Reardon KF
    Biotechnol Bioeng; 2008 Nov; 101(4):702-13. PubMed ID: 18512260
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Geomycology: metals, actinides and biominerals.
    Gadd GM; Rhee YJ; Stephenson K; Wei Z
    Environ Microbiol Rep; 2012 Jun; 4(3):270-96. PubMed ID: 23760792
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microbial nitrogen cycles: physiology, genomics and applications.
    Ye RW; Thomas SM
    Curr Opin Microbiol; 2001 Jun; 4(3):307-12. PubMed ID: 11378484
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Quantifying heavy metals sequestration by sulfate-reducing bacteria in an Acid mine drainage-contaminated natural wetland.
    Moreau JW; Fournelle JH; Banfield JF
    Front Microbiol; 2013; 4():43. PubMed ID: 23487496
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management.
    Dhuldhaj UP; Yadav IC; Singh S; Sharma NK
    Rev Environ Contam Toxicol; 2013; 224():1-38. PubMed ID: 23232917
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Arsenic metabolism by microbes in nature and the impact on arsenic remediation.
    Tsai SL; Singh S; Chen W
    Curr Opin Biotechnol; 2009 Dec; 20(6):659-67. PubMed ID: 19880307
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine.
    Zeng XC; E G; Wang J; Wang N; Chen X; Mu Y; Li H; Yang Y; Liu Y; Wang Y
    Appl Environ Microbiol; 2016 Dec; 82(24):7019-7029. PubMed ID: 27663031
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Study of canal sediments contaminated with heavy metals: fungal versus bacterial bioleaching techniques.
    Sabra N; Dubourguier HC; Duval MN; Hamieh T
    Environ Technol; 2011; 32(11-12):1307-24. PubMed ID: 21970173
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Current researches in microbial remediation of arsenic pollution].
    Wu J; Xie MJ; Yang Q; Tu SX
    Huan Jing Ke Xue; 2011 Mar; 32(3):817-24. PubMed ID: 21634183
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Distribution and activity of microorganisms in the deep repository for liquid radioactive waste at the Siberian Chemical Combine].
    Nazina TN; Luk'ianova EA; Zakharova EV; Ivoĭlov VS; Poltaraus AB; Kalmykov SN; Beliaev SS; Zubkov AA
    Mikrobiologiia; 2006; 75(6):836-48. PubMed ID: 17205810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.