These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 9299780)
1. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Walfridsson M; Anderlund M; Bao X; Hahn-Hägerdal B Appl Microbiol Biotechnol; 1997 Aug; 48(2):218-24. PubMed ID: 9299780 [TBL] [Abstract][Full Text] [Related]
2. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257 [TBL] [Abstract][Full Text] [Related]
3. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Anderlund M; Rådström P; Hahn-Hägerdal B Metab Eng; 2001 Jul; 3(3):226-35. PubMed ID: 11461145 [TBL] [Abstract][Full Text] [Related]
4. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Jin YS; Jeffries TW Appl Biochem Biotechnol; 2003; 105 -108():277-86. PubMed ID: 12721451 [TBL] [Abstract][Full Text] [Related]
5. Endogenous xylose pathway in Saccharomyces cerevisiae. Toivari MH; Salusjärvi L; Ruohonen L; Penttilä M Appl Environ Microbiol; 2004 Jun; 70(6):3681-6. PubMed ID: 15184173 [TBL] [Abstract][Full Text] [Related]
6. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Hou J; Shen Y; Li XP; Bao XM Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216 [TBL] [Abstract][Full Text] [Related]
7. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
8. Co-expression of xylose reductase gene from Candida shehatae and endogenous xylitol dehydrogenase gene in Saccharomyces cerevisiae and the effect of metabolizing xylose to ethanol. Zhang J; Yang M; Tian S; Zhang Y; Yang X Prikl Biokhim Mikrobiol; 2010; 46(4):456-61. PubMed ID: 20873171 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Kötter P; Amore R; Hollenberg CP; Ciriacy M Curr Genet; 1990 Dec; 18(6):493-500. PubMed ID: 2127555 [TBL] [Abstract][Full Text] [Related]
10. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
11. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Toivari MH; Aristidou A; Ruohonen L; Penttilä M Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146 [TBL] [Abstract][Full Text] [Related]
12. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [TBL] [Abstract][Full Text] [Related]
13. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Kim SR; Ha SJ; Kong II; Jin YS Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925 [TBL] [Abstract][Full Text] [Related]
14. Xylitol production by recombinant Saccharomyces cerevisiae. Hallborn J; Walfridsson M; Airaksinen U; Ojamo H; Hahn-Hägerdal B; Penttilä M; Keräsnen S Biotechnology (N Y); 1991 Nov; 9(11):1090-5. PubMed ID: 1367625 [TBL] [Abstract][Full Text] [Related]
15. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. Jeppsson M; Träff K; Johansson B; Hahn-Hägerdal B; Gorwa-Grauslund MF FEMS Yeast Res; 2003 Apr; 3(2):167-75. PubMed ID: 12702449 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
17. Metabolic and Transcriptional Analysis of Recombinant Saccharomyces Cerevisiae for Xylose Fermentation: A Feasible and Efficient Approach. Shi XC; Zhang Y; Wang T; Wang XC; Lv HB; Laborda P; Duan TT IEEE J Biomed Health Inform; 2022 Jun; 26(6):2425-2434. PubMed ID: 34077376 [TBL] [Abstract][Full Text] [Related]
18. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
19. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation. Guo C; Jiang N World J Microbiol Biotechnol; 2013 Mar; 29(3):541-7. PubMed ID: 23180545 [TBL] [Abstract][Full Text] [Related]
20. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR. Xie CY; Yang BX; Song QR; Xia ZY; Gou M; Tang YQ Microb Cell Fact; 2020 Nov; 19(1):211. PubMed ID: 33187525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]