These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 9300126)
1. Bacteroides J-37, a human intestinal bacterium, produces alpha-glucuronidase. Kim DH; Jang IS; Lee SW Biol Pharm Bull; 1997 Aug; 20(8):834-7. PubMed ID: 9300126 [TBL] [Abstract][Full Text] [Related]
2. Biotransformation of glycyrrhizin to 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide by Streptococcus LJ-22, a human intestinal bacterium. Kim DH; Lee SW; Han MJ Biol Pharm Bull; 1999 Mar; 22(3):320-2. PubMed ID: 10220293 [TBL] [Abstract][Full Text] [Related]
3. A Novel β-Glucuronidase from Talaromyces pinophilus Li-93 Precisely Hydrolyzes Glycyrrhizin into Glycyrrhetinic Acid 3- Xu Y; Feng X; Jia J; Chen X; Jiang T; Rasool A; Lv B; Qu L; Li C Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30054355 [TBL] [Abstract][Full Text] [Related]
4. Distribution of enzymes involved in the metabolism of glycyrrhizin in various organs of rat. Akao T Biol Pharm Bull; 1998 Oct; 21(10):1036-44. PubMed ID: 9821806 [TBL] [Abstract][Full Text] [Related]
5. Effect of pH on metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by collected human intestinal flora. Akao T Biol Pharm Bull; 2001 Oct; 24(10):1108-12. PubMed ID: 11642312 [TBL] [Abstract][Full Text] [Related]
6. Differences in the metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by human intestinal flora. Akao T Biol Pharm Bull; 2000 Dec; 23(12):1418-23. PubMed ID: 11145169 [TBL] [Abstract][Full Text] [Related]
7. Hydrolysis of glycyrrhetyl mono-glucuronide to glycyrrhetic acid by glycyrrhetyl mono-glucuronide beta-D-glucuronidase of Eubacterium sp. GLH. Akao T Biol Pharm Bull; 1997 Dec; 20(12):1245-9. PubMed ID: 9448097 [TBL] [Abstract][Full Text] [Related]
8. Glycyrrhizin stimulates growth of Eubacterium sp. strain GLH, a human intestinal anaerobe. Akao T; Akao T; Kobashi K Appl Environ Microbiol; 1988 Aug; 54(8):2027-30. PubMed ID: 3178209 [TBL] [Abstract][Full Text] [Related]
9. Characteristics and molecular determinants of a highly selective and efficient glycyrrhizin-hydrolyzing β-glucuronidase from Staphylococcus pasteuri 3I10. Wei B; Wang PP; Yan ZX; Yan R Appl Microbiol Biotechnol; 2018 Nov; 102(21):9193-9205. PubMed ID: 30109395 [TBL] [Abstract][Full Text] [Related]
10. Hydrolysis of glycyrrhizin to 18 beta-glycyrrhetyl monoglucuronide by lysosomal beta-D-glucuronidase of animal livers. Akao T; Akao T; Hattori M; Kanaoka M; Yamamoto K; Namba T; Kobashi K Biochem Pharmacol; 1991 Mar 15-Apr 1; 41(6-7):1025-9. PubMed ID: 2009072 [TBL] [Abstract][Full Text] [Related]
11. Competition in the metabolism of glycyrrhizin with glycyrrhetic acid mono-glucuronide by mixed Eubacterium sp. GLH and Ruminococcus sp. PO1-3. Akao T Biol Pharm Bull; 2000 Feb; 23(2):149-54. PubMed ID: 10706376 [TBL] [Abstract][Full Text] [Related]
12. Effects of glycyrrhizin and glycyrrhetic acid on the growth, glycyrrhizin beta-D-glucuronidase and 3 beta-hydroxysteroid dehydrogenase of human intestinal bacteria. Akao T Biol Pharm Bull; 2000 Jan; 23(1):104-7. PubMed ID: 10706421 [TBL] [Abstract][Full Text] [Related]
13. Influence of various bile acids on the metabolism of glycyrrhizin and glycyrrhetic acid by Ruminococcus sp. PO1-3 of human intestinal bacteria. Akao T Biol Pharm Bull; 1999 Aug; 22(8):787-93. PubMed ID: 10480314 [TBL] [Abstract][Full Text] [Related]
14. Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities. Kim DH; Hong SW; Kim BT; Bae EA; Park HY; Han MJ Arch Pharm Res; 2000 Apr; 23(2):172-7. PubMed ID: 10836746 [TBL] [Abstract][Full Text] [Related]
15. Hasty effect on the metabolism of glycyrrhizin by Eubacterium sp. GLH with Ruminococcus sp. PO1-3 and Clostridium innocuum ES24-06 of human intestinal bacteria. Akao T Biol Pharm Bull; 2000 Jan; 23(1):6-11. PubMed ID: 10706402 [TBL] [Abstract][Full Text] [Related]
16. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. Yang J; Qian D; Jiang S; Shang EX; Guo J; Duan JA J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jun; 898():95-100. PubMed ID: 22583754 [TBL] [Abstract][Full Text] [Related]
17. Baicalin, the predominant flavone glucuronide of scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. Akao T; Kawabata K; Yanagisawa E; Ishihara K; Mizuhara Y; Wakui Y; Sakashita Y; Kobashi K J Pharm Pharmacol; 2000 Dec; 52(12):1563-8. PubMed ID: 11197087 [TBL] [Abstract][Full Text] [Related]
18. Identification of isoliquiritigenin as an activator that stimulates the enzymatic production of glycyrrhetinic acid monoglucuronide. Wang X; Wang D; Huo Y; Dai D; Li C; Li C; Liu G Sci Rep; 2017 Oct; 7(1):12503. PubMed ID: 28970510 [TBL] [Abstract][Full Text] [Related]
19. β-Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30. Sakurama H; Kishino S; Uchibori Y; Yonejima Y; Ashida H; Kita K; Takahashi S; Ogawa J Appl Microbiol Biotechnol; 2014 May; 98(9):4021-32. PubMed ID: 24253830 [TBL] [Abstract][Full Text] [Related]
20. Anti-allergic activity of 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide. Park HY; Park SH; Yoon HK; Han MJ; Kim DH Arch Pharm Res; 2004 Jan; 27(1):57-60. PubMed ID: 14969340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]