These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9300561)

  • 1. Transplant therapy: recovery of function after spinal cord injury.
    Zompa EA; Cain LD; Everhart AW; Moyer MP; Hulsebosch CE
    J Neurotrauma; 1997 Aug; 14(8):479-506. PubMed ID: 9300561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of different methods of fetal spinal cord tissue transplanted on reversing the axotomy-induced neurons atrophy rats injured spinal cord].
    Zhang Q; Liao WH; Wang ZZ
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2001 Mar; 15(2):65-8. PubMed ID: 11286163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structural integrity of glial scar tissue associated with a chronic spinal cord lesion can be altered by transplanted fetal spinal cord tissue.
    Houle J
    J Neurosci Res; 1992 Jan; 31(1):120-30. PubMed ID: 1613818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats.
    Ogawa Y; Sawamoto K; Miyata T; Miyao S; Watanabe M; Nakamura M; Bregman BS; Koike M; Uchiyama Y; Toyama Y; Okano H
    J Neurosci Res; 2002 Sep; 69(6):925-33. PubMed ID: 12205685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinnervation of the biceps brachii muscle following cotransplantation of fetal spinal cord and autologous peripheral nerve into the injured cervical spinal cord of the adult rat.
    Duchossoy Y; Kassar-Duchossoy L; Orsal D; Stettler O; Horvat JC
    Exp Neurol; 2001 Feb; 167(2):329-40. PubMed ID: 11161621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord.
    Reier PJ; Stokes BT; Thompson FJ; Anderson DK
    Exp Neurol; 1992 Jan; 115(1):177-88. PubMed ID: 1370221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transplanting neural progenitors into a complete transection model of spinal cord injury.
    Medalha CC; Jin Y; Yamagami T; Haas C; Fischer I
    J Neurosci Res; 2014 May; 92(5):607-18. PubMed ID: 24452691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of human fetal spinal cord grafts in the adult rat spinal cord: influences of lesion and grafting conditions.
    Giovanini MA; Reier PJ; Eskin TA; Wirth E; Anderson DK
    Exp Neurol; 1997 Dec; 148(2):523-43. PubMed ID: 9417830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M; Okano H; Toyama Y; Dai HN; Finn TP; Bregman BS
    J Neurosci Res; 2005 Aug; 81(4):457-68. PubMed ID: 15968644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the growth and fate of fetal spinal iso- and allografts in the adult rat injured spinal cord.
    Theele DP; Schrimsher GW; Reier PJ
    Exp Neurol; 1996 Nov; 142(1):128-43. PubMed ID: 8912904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Transplants as a therapy after spinal cord injury].
    Sławińska U
    Neurol Neurochir Pol; 2002; 36 Suppl 1():73-94. PubMed ID: 12189688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury.
    Bunge MB; Wood PM
    Handb Clin Neurol; 2012; 109():523-40. PubMed ID: 23098734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.
    Emgård M; Piao J; Aineskog H; Liu J; Calzarossa C; Odeberg J; Holmberg L; Samuelsson EB; Bezubik B; Vincent PH; Falci SP; Seiger Å; Åkesson E; Sundström E
    Exp Neurol; 2014 Mar; 253():138-45. PubMed ID: 24412492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acellular spinal cord scaffold seeded with bone marrow stromal cells protects tissue and promotes functional recovery in spinal cord-injured rats.
    Chen J; Zhang Z; Liu J; Zhou R; Zheng X; Chen T; Wang L; Huang M; Yang C; Li Z; Yang C; Bai X; Jin D
    J Neurosci Res; 2014 Mar; 92(3):307-17. PubMed ID: 24375695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term survival and outgrowth of mechanically engineered nervous tissue constructs implanted into spinal cord lesions.
    Iwata A; Browne KD; Pfister BJ; Gruner JA; Smith DH
    Tissue Eng; 2006 Jan; 12(1):101-10. PubMed ID: 16499447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Reconstruction of the spinal cord and its motor connections using embryonal nervous tissue transplantation and peripheral nerve autotransplantation. A study in the adult rat].
    Horvat JC
    Neurochirurgie; 1991; 37(5):303-11. PubMed ID: 1758562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of human neural stem cells for spinal cord injury in primates.
    Iwanami A; Kaneko S; Nakamura M; Kanemura Y; Mori H; Kobayashi S; Yamasaki M; Momoshima S; Ishii H; Ando K; Tanioka Y; Tamaoki N; Nomura T; Toyama Y; Okano H
    J Neurosci Res; 2005 Apr; 80(2):182-90. PubMed ID: 15772979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Therapeutic Effectiveness of Delayed Fetal Spinal Cord Tissue Transplantation on Respiratory Function Following Mid-Cervical Spinal Cord Injury.
    Lin CC; Lai SR; Shao YH; Chen CL; Lee KZ
    Neurotherapeutics; 2017 Jul; 14(3):792-809. PubMed ID: 28097486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.