These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9301044)

  • 1. Dynamic and thermodynamic effects of glycerol on bovine serum albumin in aqueous solution: a tryptophan phosphorescence study.
    Hogiu S; Enescu M; Pascu ML
    J Photochem Photobiol B; 1997 Aug; 40(1):55-60. PubMed ID: 9301044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy.
    Berger JW; Vanderkooi JM
    Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential hydration of bovine serum albumin in polyhydric alcohol-water mixtures.
    Gekko K; Morikawa T
    J Biochem; 1981 Jul; 90(1):39-50. PubMed ID: 7287687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of solvent viscosity, polarity and pH on the charge transfer between tryptophan radical and tyrosine in bovine serum albumin: a pulse radiolysis study.
    Joshi R; Mukherjee T
    Biophys Chem; 2003 Jan; 103(1):89-98. PubMed ID: 12504257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective quenching of room-temperature phosphorescence lifetimes of proteins: bovine and human serum albumins.
    Wei Y; Dong C; Liu D; Shuang S; Huie CW
    Biomacromolecules; 2007 Mar; 8(3):761-4. PubMed ID: 17274655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan phosphorescence as a structural probe of mitochondrial F1-ATPase epsilon-subunit.
    Solaini G; Baracca A; Parenti Castelli G; Strambini GB
    Eur J Biochem; 1993 Jun; 214(3):729-34. PubMed ID: 8319682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting time-resolved protein phosphorescence.
    Draganski AR; Corradini MG; Ludescher RD
    Appl Spectrosc; 2015 Sep; 69(9):1074-81. PubMed ID: 26253845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorescence measurements of calf gamma-II, III, and IV crystallins at 77 and 293 K.
    Berger JW; Vanderkooi JM; Tallmadge DH; Borkman RF
    Exp Eye Res; 1989 May; 48(5):627-39. PubMed ID: 2737261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room temperature phosphorescence and the dynamic aspects of protein structure.
    Saviotti ML; Galley WC
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):4154-8. PubMed ID: 4610571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycerol effects on protein flexibility: a tryptophan phosphorescence study.
    Gonnelli M; Strambini GB
    Biophys J; 1993 Jul; 65(1):131-7. PubMed ID: 8369422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of tryptophan environments in glutamate dehydrogenases from temperature-dependent phosphorescence.
    Strambini GB; Cioni P; Felicioli RA
    Biochemistry; 1987 Aug; 26(16):4968-75. PubMed ID: 3663638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The triplet-state lifetime of indole in aqueous and viscous environments: significance to the interpretation of room temperature phosphorescence in proteins.
    Fischer CJ; Gafni A; Steel DG; Schauerte JA
    J Am Chem Soc; 2002 Sep; 124(35):10359-66. PubMed ID: 12197738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-induced conformational transition of bovine serum albumin in neutral aqueous solution by reversed-phase liquid chromatography.
    Bian L; Wu D; Hu W
    Biomed Chromatogr; 2014 Feb; 28(2):295-301. PubMed ID: 24037907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room temperature phosphorescence study on the structural flexibility of single tryptophan containing proteins.
    Kowalska-Baron A; Gałęcki K; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():380-7. PubMed ID: 25025310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature Dependence of Tryptophan Fluorescence Lifetime as an Indicator of Its Microenvironment Dynamics.
    Gorokhov VV; Korvatovsky BN; Knox PP; Grishanova NP; Goryachev SN; Pashchenko VZ; Rubin AB
    Dokl Biochem Biophys; 2021 May; 498(1):170-176. PubMed ID: 34189644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrosation of tryptophan residue(s) in serum albumin and model dipeptides. Biochemical characterization and bioactivity.
    Zhang YY; Xu AM; Nomen M; Walsh M; Keaney JF; Loscalzo J
    J Biol Chem; 1996 Jun; 271(24):14271-9. PubMed ID: 8662958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan phosphorescence and the conformation of liver alcohol dehydrogenase in solution and in the crystalline state.
    Gabellieri E; Strambini GB; Gualtieri P
    Biophys Chem; 1988 May; 30(1):61-7. PubMed ID: 3416037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long time-scale probing of the protein globular core using hydrogen-exchange and room temperature phosphorescence.
    Schlyer BD; Steel DG; Gafni A
    Biochem Biophys Res Commun; 1996 Jun; 223(3):670-4. PubMed ID: 8687454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.